Nothing
## ---- echo = FALSE, message = FALSE-------------------------------------------
knitr::opts_chunk$set(collapse = T, comment = "#>")
options(tibble.print_min = 4L, tibble.print_max = 4L)
library(tidyjson)
## ---- message = FALSE---------------------------------------------------------
library(dplyr)
# Define a simple people JSON collection
people <- c('{"age": 32, "name": {"first": "Bob", "last": "Smith"}}',
'{"age": 54, "name": {"first": "Susan", "last": "Doe"}}',
'{"age": 18, "name": {"first": "Ann", "last": "Jones"}}')
# Tidy the JSON data
people %>% spread_all
## -----------------------------------------------------------------------------
worldbank %>% str
## -----------------------------------------------------------------------------
worldbank %>% spread_all
## -----------------------------------------------------------------------------
worldbank %>% spread_all %>% select(regionname, totalamt)
## ---- echo = FALSE, message = FALSE-------------------------------------------
options(tibble.print_min = 10L, tibble.print_max = 10L)
## -----------------------------------------------------------------------------
worldbank %>% gather_object %>% json_types %>% count(name, type)
## ---- echo = FALSE, message = FALSE-------------------------------------------
options(tibble.print_min = 4L, tibble.print_max = 4L)
## -----------------------------------------------------------------------------
worldbank %>% enter_object(majorsector_percent)
## -----------------------------------------------------------------------------
worldbank %>% enter_object(majorsector_percent) %>% gather_array
## -----------------------------------------------------------------------------
worldbank %>%
enter_object(majorsector_percent) %>% gather_array %>% spread_all
## -----------------------------------------------------------------------------
worldbank %>%
spread_all %>% select(region = regionname, funding = totalamt) %>%
enter_object(majorsector_percent) %>% gather_array %>%
spread_all %>% rename(sector = Name, percent = Percent) %>%
group_by(region, sector) %>%
summarize(funding = sum(funding * percent))
## -----------------------------------------------------------------------------
worldbank %>% spread_all %>% select(regionname, totalamt)
## -----------------------------------------------------------------------------
worldbank %>% gather_object %>% json_types %>% count(name, type)
## -----------------------------------------------------------------------------
worldbank %>% enter_object(majorsector_percent) %>% gather_array
## -----------------------------------------------------------------------------
companies[1] %>% gather_object %>%
filter(is_json_array(.)) %>% gather_array
## -----------------------------------------------------------------------------
companies[1] %>% gather_object %>%
filter(is_json_object(.)) %>% gather_object
## -----------------------------------------------------------------------------
json <- '{"2015": 5, "2016": 10}'
json %>% gather_object("year") %>% append_values_number("count")
## -----------------------------------------------------------------------------
worldbank %>% as.tbl_json
## ---- error = TRUE------------------------------------------------------------
bad_json <- '{"key": "value"'
bad_json %>% as.tbl_json
## -----------------------------------------------------------------------------
issues %>% as.tbl_json
## -----------------------------------------------------------------------------
issues %>% as.tbl_json %>% gather_array
## -----------------------------------------------------------------------------
library(purrr)
list('1', '2') %>% flatten_chr %>% as.tbl_json
## -----------------------------------------------------------------------------
df <- tibble(id = 1:2, json = list('[1, 2]', '[3, 4]'))
df %>% as.tbl_json(json.column = "json")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.