Nothing
#' Autoplots for `gt_dapc` objects
#'
#' For `gt_dapc`, the following types of plots are available:
#' - `screeplot`: a plot of the eigenvalues of the discriminant axes
#' - `scores` a scatterplot of the scores of each individual on two discriminant
#' axes (defined by `ld`)
#' - `loadings` a plot of loadings of all loci for a discriminant axis
#' (chosen with `ld`)
#' - `components` a bar plot showing the probability of assignment to
#' each cluster
#'
#' `autoplot` produces simple plots to quickly inspect an object. They are not
#' customisable; we recommend that you use `ggplot2` to produce publication
#' ready plots.
#'
#' @param object an object of class `gt_dapc`
#' @param type the type of plot (one of "screeplot", "scores", "loadings", and
#' "components")
#' @param ld the principal components to be plotted: for scores, a pair of
#' values e.g. c(1,2); for `loadings` either one or more values.
#' @param group a vector of group memberships to order the individuals in
#' "components" plot. If NULL, the clusters used for the DAPC will be used.
#' @param n_col for `loadings` plots, if multiple LD axis are plotted, how many
#' columns should be used.
#' @param ... not currently used.
#' @returns a `ggplot2` object
#' @rdname autoplot_gt_dapc
#' @export
#' @examples
#' # Create a gen_tibble of lobster genotypes
#' bed_file <-
#' system.file("extdata", "lobster", "lobster.bed", package = "tidypopgen")
#' lobsters <- gen_tibble(bed_file,
#' backingfile = tempfile("lobsters"),
#' quiet = TRUE
#' )
#'
#' # Remove monomorphic loci and impute
#' lobsters <- lobsters %>% select_loci_if(loci_maf(genotypes) > 0)
#' lobsters <- gt_impute_simple(lobsters, method = "mode")
#'
#' # Create PCA and run DAPC
#' pca <- gt_pca_partialSVD(lobsters)
#' populations <- as.factor(lobsters$population)
#' dapc_res <- gt_dapc(pca, n_pca = 6, n_da = 2, pop = populations)
#'
#' # Screeplot
#' autoplot(dapc_res, type = "screeplot")
#'
#' # Scores plot
#' autoplot(dapc_res, type = "scores", ld = c(1, 2))
#'
#' # Loadings plot
#' autoplot(dapc_res, type = "loadings", ld = 1)
#'
#' # Components plot
#' autoplot(dapc_res, type = "components", group = populations)
#'
autoplot.gt_dapc <- function(
object,
type = c(
"screeplot",
"scores",
"loadings",
"components"
),
ld = NULL,
group = NULL,
n_col = 1,
...) {
rlang::check_dots_empty()
type <- match.arg(type)
if (type == "screeplot") {
tidy(object, matrix = "eigenvalues") %>%
ggplot2::ggplot(ggplot2::aes(x = .data$LD, y = .data$eigenvalue)) +
ggplot2::geom_point() +
ggplot2::geom_line()
} else if (type == "scores") {
if (is.null(ld)) {
ld <- c(1, 2)
}
if (length(ld) != 2) {
stop("for 'scores' plots, 'ld' should be a pair of values, e.g. c(1,2)")
}
tibble(cluster = object$grp) %>%
mutate(
LDa = object$ind.coord[, ld[1]],
LDb = object$ind.coord[, ld[2]]
) %>%
ggplot2::ggplot(ggplot2::aes(
x = .data$LDa,
y = .data$LDb,
colour = .data$cluster
)) +
ggplot2::geom_point() +
ggplot2::stat_ellipse() +
ggplot2::labs(x = paste0("LD", ld[1]), y = paste0("LD", ld[2]))
} else if (type == "loadings") {
# code modified from bigstatsr for consistency with pca
# stop("autoplot for gt_dapc does not have a loading option yet") # nolint
if (is.null(object$var.load)) {
stop(paste(
"the dapc object was saved without loadings for loci,",
"rerun it with 'loadings_by_locus = TRUE'"
))
}
if (is.null(ld)) {
ld <- 1
}
if (length(ld) > 1) {
all.p <- lapply(ld, function(i) {
p <- autoplot(object, type = "loadings", ld = i)
p$layers[[1]] <- NULL
p + ggplot2::geom_hex() + ggplot2::scale_fill_viridis_c()
})
patchwork::wrap_plots(all.p, ncol = n_col)
} else {
p <- ggplot2::ggplot(
mapping = ggplot2::aes(
x = bigstatsr::rows_along(object$var.load),
y = object$var.load[, ld]
)
) +
ggplot2::geom_point() +
bigstatsr::theme_bigstatsr(size.rel = 1) +
ggplot2::labs(
title = paste0("Loadings of LD", ld),
x = "Locus",
y = NULL
)
nval <- nrow(object$var.load)
`if`(
nval > 12,
p,
p + ggplot2::scale_x_discrete(limits = factor(seq_len(nval)))
)
}
} else if (type == "components") {
if (is.null(group)) {
group <- object$grp
}
q_tbl <- object$posterior %>%
tibble::as_tibble() %>%
dplyr::rename_with(~ paste0("Q", .x)) %>%
# add the pops data for plotting
dplyr::mutate(
name = rownames(object$posterior),
group = group
) %>%
tidyr::pivot_longer(
cols = starts_with("Q"),
names_to = "q",
values_to = "prob"
)
ggplot2::ggplot(
q_tbl,
ggplot2::aes(
x = .data$name,
y = .data$prob,
fill = .data$q
)
) +
ggplot2::geom_col(color = "gray", size = 0.1) +
ggplot2::facet_grid(
~group,
switch = "x",
scales = "free",
space = "free"
) +
ggplot2::theme_minimal() +
ggplot2::labs(x = "", y = "") +
ggplot2::scale_y_continuous(expand = c(0, 0)) +
ggplot2::scale_x_discrete(expand = ggplot2::expansion(add = 0.7)) +
ggplot2::theme(
panel.spacing.x = ggplot2::unit(0.01, "lines"),
axis.text.x = ggplot2::element_blank(),
panel.grid = ggplot2::element_blank()
) +
ggplot2::guides(fill = "none")
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.