Description Usage Arguments Details Note Author(s) References See Also Examples
View source: R/plotAUCcurveDiff.R
This function plots the curve of the difference of two time-dependent AUCs over time. Pointwise and simultaneous confidence bands for this curve can also be plotted when inverse probability of censoring weights are computed from a Kaplan-Meier estimator.
1 2 |
object1 |
An object of class "ipcwsurvivalROC" or "ipcwcompetingrisksROC"
previously estimated from the |
object2 |
An object of class "ipcwsurvivalROC" or "ipcwcompetingrisksROC"
previously estimated from the |
FP |
In the competing risks setting, a numeric value that indicates which
definition of AUC is plotted. |
add |
A logical value that indicates if you want to add the AUC curve to a pre-existing plot. Default is |
conf.int |
A logical value that indicates whether or not you want to plot the bands
of pointwise confidence intervals. Default is |
conf.band |
A logical value that indicates whether or not you want to plot the simultaneous confidence bands. Default is |
col |
The color to plot the AUC curve. Default is |
ylim |
The range of the y-axis. Default is |
Simultaneous confidence bands can be of particular interest for testing null hypotheses such as "for all time t within an interval, AUC(t) for both markers are equal", by observing whether or not the zero line is contained within the band.
The two markers evluated in objects object1
and
object2
must have been measured on the same subjects.
Paul Blanche pabl@sund.ku.dk
Blanche, P., Dartigues, J. F., & Jacqmin-Gadda, H. (2013). Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Statistics in medicine, 32(30), 5381-5397.
Hung, H. and Chiang, C. (2010). Estimation methods for time-dependent AUC with survival data. Canadian Journal of Statistics, 38(1):8-26
confint
for confidence intervals and confidence bands computation of time-dependentAUC.
plotAUCcurve
for plotting the curve of time-dependent-AUC: AUC(t) versus t. Confidence intervals and simultaneous confidence bands can also be plotted.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | ## Not run:
## computation times is roughly 10 seconds
##-------------Without competing risks-------------------
library(survival)
data(pbc)
head(pbc)
pbc<-pbc[!is.na(pbc$trt),] # select only randomised subjects
pbc$status<-as.numeric(pbc$status==2) # create event indicator: 1 for death, 0 for censored
# we evaluate bilirubin as a prognostic biomarker for death.
ROC.bili<-timeROC(T=pbc$time,
delta=pbc$status,marker=pbc$bili,
cause=1,weighting="marginal",
times=quantile(pbc$time,probs=seq(0.2,0.8,0.02)),
iid=TRUE)
ROC.bili
# we evaluate bilirubin as a prognostic biomarker for death.
ROC.albumin<-timeROC(T=pbc$time,
delta=pbc$status,marker=-pbc$albumin,
cause=1,weighting="marginal",
times=quantile(pbc$time,probs=seq(0.2,0.8,0.02)),
iid=TRUE)
ROC.albumin
# plot AUC curve for albumin and bilirunbin with pointwise confidence interval
plotAUCcurve(ROC.albumin,conf.int=TRUE,col="red")
plotAUCcurve(ROC.bili,conf.int=TRUE,col="blue",add=TRUE)
legend("bottomright",c("albumin","bilirunbin"),col=c("red","blue"),lty=1,lwd=2)
#plot the curve of the difference of the two time-dependent AUCs over time
plotAUCcurveDiff(ROC.bili,ROC.albumin,conf.int=TRUE,conf.band=TRUE,ylim=c(-0.2,0.5))
##-------------With competing risks-------------------
data(Melano)
head(Melano)
# Evaluate tumor thickness as a prognostic biomarker for
# death from malignant melanoma.
ROC.thick<-timeROC(T=Melano$time,delta=Melano$status,
marker=Melano$thick,cause=1,
times=quantile(Melano$time,probs=seq(0.2,0.8,0.01)),
iid=TRUE)
ROC.thick
ROC.age<-timeROC(T=Melano$time,delta=Melano$status,
marker=Melano$age,cause=1,
times=quantile(Melano$time,probs=seq(0.2,0.8,0.01)),
iid=TRUE)
ROC.age
# plot the two AUC curves on the same plot
plotAUCcurve(ROC.thick,FP=2,conf.int=TRUE,col="blue")
plotAUCcurve(ROC.age,FP=2,conf.int=TRUE,col="red",add=TRUE)
legend("bottomright",c("thickness","age"),col=c("blue","red"),lty=1,lwd=2)
# plot the curve of the difference of the two time-dependent AUCs over time
plotAUCcurveDiff(ROC.thick,ROC.age,FP=2,conf.int=TRUE,conf.band=TRUE,col="red")
## End(Not run)
|
id time status trt age sex ascites hepato spiders edema bili chol
1 1 400 2 1 58.76523 f 1 1 1 1.0 14.5 261
2 2 4500 0 1 56.44627 f 0 1 1 0.0 1.1 302
3 3 1012 2 1 70.07255 m 0 0 0 0.5 1.4 176
4 4 1925 2 1 54.74059 f 0 1 1 0.5 1.8 244
5 5 1504 1 2 38.10541 f 0 1 1 0.0 3.4 279
6 6 2503 2 2 66.25873 f 0 1 0 0.0 0.8 248
albumin copper alk.phos ast trig platelet protime stage
1 2.60 156 1718.0 137.95 172 190 12.2 4
2 4.14 54 7394.8 113.52 88 221 10.6 3
3 3.48 210 516.0 96.10 55 151 12.0 4
4 2.54 64 6121.8 60.63 92 183 10.3 4
5 3.53 143 671.0 113.15 72 136 10.9 3
6 3.98 50 944.0 93.00 63 NA 11.0 3
Time-dependent-Roc curve estimated using IPCW (n=312, without competing risks).
Cases Survivors Censored AUC (%) se
t=999.2 53 249 10 83.96 2.91
t=1412.74 71 206 35 86.65 2.44
t=1839.5 86 156 70 88.03 2.25
t=2444.56 99 106 107 84.70 2.89
t=3039 108 63 141 80.79 3.48
Method used for estimating IPCW:marginal
Total computation time : 1.87 secs.
Time-dependent-Roc curve estimated using IPCW (n=312, without competing risks).
Cases Survivors Censored AUC (%) se
t=999.2 53 249 10 75.00 3.83
t=1412.74 71 206 35 75.74 3.56
t=1839.5 86 156 70 76.55 3.28
t=2444.56 99 106 107 79.22 3.18
t=3039 108 63 141 75.18 3.90
Method used for estimating IPCW:marginal
Total computation time : 2.22 secs.
time status thick age
1 10 2 6.76 76
2 30 2 0.65 56
3 35 0 1.34 41
4 99 2 2.90 71
5 185 1 12.08 52
6 204 1 4.84 28
Time-dependent-Roc curve estimated using IPCW (n=205, with competing risks).
Cases Survivors Other events Censored AUC_1 (%) se_1 AUC_2 (%) se_2
t=1267.2 33 164 7 1 79.48 4.10 78.48 4.10
t=1698 44 133 9 19 76.88 3.99 76.04 3.96
t=2005 46 102 10 47 75.00 4.20 73.83 4.17
t=2426 52 71 11 71 71.69 4.68 70.67 4.56
t=3204.8 56 41 13 95 68.22 5.61 66.61 5.32
Method used for estimating IPCW:marginal
Total computation time : 2.9 secs.
Time-dependent-Roc curve estimated using IPCW (n=205, with competing risks).
Cases Survivors Other events Censored AUC_1 (%) se_1 AUC_2 (%) se_2
t=1267.2 33 164 7 1 56.15 5.77 54.87 5.73
t=1698 44 133 9 19 58.86 5.24 56.99 5.19
t=2005 46 102 10 47 62.02 5.22 59.68 5.18
t=2426 52 71 11 71 65.58 5.06 62.24 5.00
t=3204.8 56 41 13 95 68.29 5.38 64.31 5.26
Method used for estimating IPCW:marginal
Total computation time : 2.81 secs.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.