timmaBinary: Predicting drug sensitivity with binary drug-target...

Description Usage Arguments Value Author(s) References Examples

Description

A function to predict the drug sensitivity with binary drug-target interaction data using the original maximization and minimization rules

Usage

1
timmaBinary(drug_target_profile, sens, loo = TRUE)

Arguments

drug_target_profile

the drug-target interaction data. See timma.

sens

a drug sensitivity vector.

loo

a logical value indicating whether to use the leave-one-out cross-validation in the model selection process. By default, loo = TRUE.

Value

A list containing the following components:

dummy

the predicted efficacy for target combinations that can be found from the training data

error

the prediction errors

prediction

predicted drug sensitivity

Author(s)

Liye He liye.he@helsinki.fi

References

Tang J, Karhinen L, Xu T, Szwajda A, Yadav B, Wennerberg K, Aittokallio T. Target inhibition networks: predicting selective combinations of druggable targets to block cancer survival pathways. PLOS Computational Biology 2013; 9: e1003226.

Examples

1
2
3

timma documentation built on May 2, 2019, 1:10 p.m.