Nothing
test_that("SVC works", {
library(fmesher)
set.seed(101)
options("tinyVAST.verbose" = FALSE)
# Simulate settings
theta_xy = 0.4
n_x = n_y = 10
spatial_sd = 0.5
# Simulate GMRFs
R_s = exp(-theta_xy * abs(outer(1:n_x, 1:n_y, FUN="-")) )
V_ss = spatial_sd^2 * kronecker(R_s, R_s)
xi_s = mvtnorm::rmvnorm(1, sigma=V_ss )[1,]
logd_s = 1 + xi_s
# Shape into longform data-frame and add error
Data = data.frame( expand.grid(x=1:n_x, y=1:n_y),
"var"="logn",
d_s = exp(as.vector(logd_s)) )
Data$n = tweedie::rtweedie( n = nrow(Data),
mu = Data$d_s,
phi = 0.5,
power = 1.5 )
mean(Data$n==0)
# make mesh
mesh = fm_mesh_2d( Data[,c('x','y')] )
# fit model with random walk using GMRF-projection
my1 = tinyVAST( space_term = "logn <-> logn, sd",
data = Data,
formula = n ~ 1,
spatial_domain = mesh,
family = tweedie(),
control = tinyVASTcontrol() )
# fit model with random walk using standard GMRF
my2 = tinyVAST( spatial_varying = ~ 1,
data = Data,
formula = n ~ 1,
spatial_domain = mesh,
family = tweedie(),
control = tinyVASTcontrol() )
expect_equal( my1$opt$objective, my2$opt$objective, tolerance=0.001 )
# Compare predictions
pred1 = predict(my1)
pred2 = predict(my2)
expect_equal( pred1, pred2, tolerance=0.001 )
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.