prune | R Documentation |
Prunes a network represented by a tna
object by removing
edges based on a specified threshold, lowest percent of non-zero edge
weights, or the disparity filter algorithm (Serrano et al., 2009).
It ensures the network remains weakly connected.
Prunes a network represented by a tna
object by removing
edges based on a specified threshold, lowest percent of non-zero edge
weights, or the disparity filter algorithm (Serrano et al., 2009).
It ensures the network remains weakly connected.
prune(x, ...)
## S3 method for class 'tna'
prune(
x,
method = "threshold",
threshold = 0.1,
lowest = 0.05,
level = 0.5,
boot = NULL,
...
)
## S3 method for class 'group_tna'
prune(x, ...)
x |
An object of class |
... |
Arguments passed to |
method |
A |
threshold |
A numeric value specifying the edge weight threshold. Edges with weights below or equal to this threshold will be considered for removal. |
lowest |
A |
level |
A |
boot |
A |
A pruned tna
or group_tna
object. Details on the pruning can be
viewed with pruning_details()
. The original model can be restored with
deprune()
.
Validation functions
bootstrap()
,
deprune()
,
estimate_cs()
,
permutation_test()
,
permutation_test.group_tna()
,
plot.group_tna_bootstrap()
,
plot.group_tna_permutation()
,
plot.group_tna_stability()
,
plot.tna_bootstrap()
,
plot.tna_permutation()
,
plot.tna_stability()
,
print.group_tna_bootstrap()
,
print.group_tna_permutation()
,
print.group_tna_stability()
,
print.summary.group_tna_bootstrap()
,
print.summary.tna_bootstrap()
,
print.tna_bootstrap()
,
print.tna_permutation()
,
print.tna_stability()
,
pruning_details()
,
reprune()
,
summary.group_tna_bootstrap()
,
summary.tna_bootstrap()
Validation functions
bootstrap()
,
deprune()
,
estimate_cs()
,
permutation_test()
,
permutation_test.group_tna()
,
plot.group_tna_bootstrap()
,
plot.group_tna_permutation()
,
plot.group_tna_stability()
,
plot.tna_bootstrap()
,
plot.tna_permutation()
,
plot.tna_stability()
,
print.group_tna_bootstrap()
,
print.group_tna_permutation()
,
print.group_tna_stability()
,
print.summary.group_tna_bootstrap()
,
print.summary.tna_bootstrap()
,
print.tna_bootstrap()
,
print.tna_permutation()
,
print.tna_stability()
,
pruning_details()
,
reprune()
,
summary.group_tna_bootstrap()
,
summary.tna_bootstrap()
model <- tna(group_regulation)
pruned_threshold <- prune(model, method = "threshold", threshold = 0.1)
pruned_percentile <- prune(model, method = "lowest", lowest = 0.05)
pruned_disparity <- prune(model, method = "disparity", level = 0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.