Nothing
torch_max_pool1d_with_indices <- function(self, kernel_size, stride = list(), padding = 0,
dilation = 1, ceil_mode = FALSE) {
out <- .torch_max_pool1d_with_indices(
self, kernel_size, stride, padding, dilation,
ceil_mode
)
out[[2]]$add_(1L, 1L)
out
}
torch_max_pool2d_with_indices <- function(self, kernel_size, stride = list(), padding = 0,
dilation = 1, ceil_mode = FALSE) {
out <- .torch_max_pool2d_with_indices(
self, kernel_size, stride, padding, dilation,
ceil_mode
)
out[[2]]$add_(1L, 1L)
out
}
torch_max_pool2d_with_indices_out <- function(out, indices, self, kernel_size, stride = list(),
padding = 0, dilation = 1, ceil_mode = FALSE) {
out <- .torch_max_pool2d_with_indices_out(
out, indices, self, kernel_size, stride, padding,
dilation, ceil_mode
)
out[[2]]$add_(1L, 1L)
out
}
torch_max_pool3d_with_indices <- function(self, kernel_size, stride = list(), padding = 0,
dilation = 1, ceil_mode = FALSE) {
out <- .torch_max_pool3d_with_indices(
self, kernel_size, stride, padding, dilation,
ceil_mode
)
out[[2]]$add_(1L, 1L)
out
}
torch_max_pool3d_with_indices_out <- function(out, indices, self, kernel_size, stride = list(),
padding = 0, dilation = 1, ceil_mode = FALSE) {
out <- .torch_max_pool3d_with_indices_out(
out, indices, self, kernel_size, stride,
padding, dilation, ceil_mode
)
out[[2]]$add_(1L, 1L)
out
}
torch_max <- function(self, dim, other, keepdim = FALSE) {
o <- do.call(.torch_max, as.list(environment()))
if (is.list(o) && length(o) == 2) {
o[[2]]$add_(1L, 1L)
}
o
}
torch_min <- function(self, dim, other, keepdim = FALSE) {
args <- as.list(environment())
o <- do.call(.torch_min, args)
if (is.list(o) && length(o) == 2) {
o[[2]]$add_(1L, 1L)
}
o
}
torch_argmax <- function(self, dim = NULL, keepdim = FALSE) {
o <- .torch_argmax(self, dim = dim, keepdim = keepdim)
o$add_(1L, 1L)
o
}
torch_argmin <- function(self, dim = NULL, keepdim = FALSE) {
o <- .torch_argmin(self, dim = dim, keepdim = keepdim)
o$add_(1L, 1L)
o
}
torch_nll_loss <- function(self, target, weight = list(), reduction = torch_reduction_mean(), ignore_index = -100) {
target <- to_index_tensor(target)
.torch_nll_loss(self, target, weight, reduction, ignore_index)
}
torch_nll_loss2d <- function(self, target, weight = list(), reduction = torch_reduction_mean(), ignore_index = -100) {
target <- to_index_tensor(target)
.torch_nll_loss2d(self, target, weight, reduction, ignore_index)
}
#' @rdname torch_argsort
torch_argsort <- function(self, dim = -1L, descending = FALSE) {
.torch_argsort(self = self, dim = dim, descending = descending)$add_(1L, 1L)
}
torch_cross_entropy_loss <- function(self, target, weight = list(),
reduction = torch_reduction_mean(),
ignore_index = -100L) {
target <- to_index_tensor(target)
.torch_cross_entropy_loss(
self = self, target = target, weight = weight,
reduction = reduction, ignore_index = ignore_index
)
}
torch_nll_loss_nd <- function(self, target, weight = list(), reduction = torch_reduction_mean(),
ignore_index = -100L) {
target <- to_index_tensor(target)
.torch_nll_loss_nd(
self = self, target = target, weight = weight,
reduction = reduction,
ignore_index = ignore_index
)
}
torch_sort <- function(self, dim = -1L, descending = FALSE, stable) {
if (missing(stable)) {
out <- .torch_sort(self = self, dim = dim, descending = descending)
} else {
out <- .torch_sort(self = self, dim = dim, descending = descending, stable = stable)
}
out[[2]]$add_(1L)
out
}
torch_bincount <- function(self, weights = list(), minlength = 0L) {
.torch_bincount(self = to_index_tensor(self), weights = weights,
minlength = minlength)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.