Nothing
#' @export
transform_convert_image_dtype.torch_tensor <- function(img, dtype = torch::torch_float()) {
if (img$dtype == dtype)
return(img)
if (img$is_floating_point()) {
# float to float
if (dtype$is_floating_point)
return(img$to(dtype = dtype))
# float to int
if ((img$dtype == torch::torch_float32() &&
(dtype == torch::torch_float32() || dtype == torch::torch_float64())) ||
(img$dtype == torch::torch_float64() && dtype == torch::torch_int64())
)
runtime_error("The cast from {img$dtype} to {dtype} cannot be performed safely.")
# For data in the range 0-1, (float * 255).to(uint) is only 255
# when float is exactly 1.0.
# `max + 1 - epsilon` provides more evenly distributed mapping of
# ranges of floats to ints.
eps <- 1e-3
result <- img$mul(torch::torch_iinfo(dtype)$max + 1 - eps)
result <- result$to(dtype = dtype)
return(result)
} else {
# int to float
if (dtype$is_floating_point) {
max <- torch::torch_iinfo(img$dtype)$max
img <- img$to(dtype)
return(img/max)
}
# int to int
input_max <- torch::torch_iinfo(img$dtype)$max
output_max <- torch::torch_iinfo(dtype)$max
if (input_max > output_max) {
factor <- (input_max + 1) %/% (output_max + 1)
img = img %/% factor
return(img$to(dtype = dtype))
} else {
factor <- (output_max + 1) %/% (input_max + 1)
img <- img$to(dtype = dtype)
return(img * factor)
}
}
}
#' @export
transform_normalize.torch_tensor <- function(img, mean, std, inplace = FALSE) {
check_img(img)
if (!inplace)
img <- img$clone()
dtype <- img$dtype
mean <- torch::torch_tensor(mean, dtype=dtype, device=img$device)
std <- torch::torch_tensor(std, dtype=dtype, device=img$device)
if ((std == 0)$any()$item()) {
value_error("std evaluated to zero after conversion to {dtype}, leading to division by zero.")
}
if (mean$dim() == 1)
mean <- mean[,NULL,NULL]
if (std$dim() == 1)
std <- std[,NULL,NULL]
img$sub_(mean)$div_(std)
img
}
#' @export
transform_resize.torch_tensor <- function(img, size, interpolation = 2) {
check_img(img)
interpolation_modes <- c(
"0" = "nearest",
"2" = "bilinear",
"3" = "bicubic"
)
if (!interpolation %in% names(interpolation_modes))
value_error("This interpolation mode is unsupported with Tensor input")
if (!length(size) %in% c(1,2) || !is.numeric(size))
value_error("Size must be a numeric vector of length 1 or 2.")
wh <- get_image_size(img)
w <- wh[1]
h <- wh[2]
if (length(size) == 1) {
if (w <= h) {
short <- w
long <- h
} else {
short <- h
long <- w
}
requested_new_short <- size
if (short == requested_new_short)
return(img)
new_short <- requested_new_short
new_long <- as.integer(requested_new_short * long / short)
if (w <= h) {
new_w <- new_short
new_h <- new_long
} else {
new_w <- new_long
new_h <- new_short
}
} else {
new_w <- size[2]
new_h <- size[1]
}
# make NCHW
need_squeeze <- FALSE
if (img$dim() < 4) {
img <- img$unsqueeze(1)
need_squeeze <- TRUE
}
mode <- interpolation_modes[interpolation == names(interpolation_modes)]
mode <- unname(mode)
out_dtype <- img$dtype
need_cast <- FALSE
if (!img$dtype == torch::torch_float32() &&
!img$dtype == torch::torch_float64()) {
need_cast <- TRUE
img <- img$to(dtype = torch::torch_float32())
}
if (mode %in% c("bilinear", "bicubic"))
align_corners <- FALSE
else
align_corners <- NULL
img <- torch::nnf_interpolate(img, size = c(new_h, new_w), mode = mode,
align_corners = align_corners)
if (need_squeeze)
img <- img$squeeze(1)
if (need_cast) {
if (mode == "bicubic")
img <- img$clamp(min = 0, max = 255)
img <- img$to(out_dtype)
}
img
}
#' @export
transform_pad.torch_tensor <- function(img, padding, fill = 0, padding_mode = "constant") {
check_img(img)
if (!length(padding) %in% c(1,2,4) || !is.numeric(padding))
value_error("Padding must be an int or a 1, 2, or 4 element numeric vector")
if (!padding_mode %in% c("constant", "edge", "reflect", "symmetric"))
value_error("Padding mode should be either constant, edge, reflect or symmetric")
if (length(padding) == 1)
pad_left <- pad_right <- pad_top <- pad_bottom <- padding
else if (length(padding) == 2) {
pad_left <- pad_right <- padding[1]
pad_top <- pad_bottom <- padding[2]
} else if (length(padding == 4)) {
pad_left <- padding[1]
pad_right <- padding[2]
pad_top <- padding[3]
pad_bottom <- padding[4]
}
p <- c(pad_left, pad_right, pad_top, pad_bottom)
if (padding_mode == "edge")
padding_mode <- "replicate"
else if (padding_mode == "symmetric") {
if (any(p < 0))
value_error("Padding can not be negative for symmetric padding_mode")
return(pad_symmetric(img, p))
}
need_squeeze <- FALSE
if (img$dim() < 4) {
img <- img$unsqueeze(1)
need_squeeze <- TRUE
}
out_dtype <- img$dtype
need_cast <- FALSE
if (padding_mode != "constant" &&
(img$dtype == torch::torch_float32() || img$dtype == torch::torch_float64())) {
need_cast <- TRUE
img <- img$to(torch::torch_float32())
}
img <- torch::nnf_pad(img, p, mode = padding_mode, value = as.numeric(fill))
if (need_squeeze)
img <- img$squeeze(dim = 1)
if (need_cast)
img <- img$to(dtype = out_dtype)
img
}
#' @export
transform_five_crop.torch_tensor <- function(img, size) {
check_img(img)
if (!length(size) == 2)
value_error("Please provide only 2 dimensions (h, w) for size.")
image_width <- img$size(2)
image_height <- img$size(3)
crop_height <- size[1]
crop_width <- size[2]
if (crop_width > image_width || crop_height > image_height)
value_error("Requested crop size is bigger than input size.")
tl <- transform_crop(img, 1, 1, crop_width, crop_height)
tr <- transform_crop(img, image_width - crop_width + 1, 1, image_width, crop_height)
bl <- transform_crop(img, 1, image_height - crop_height + 1, crop_width, image_height)
br <- transform_crop(img, image_width - crop_width + 1, image_height - crop_height + 1, image_width, image_height)
center <- transform_center_crop(img, c(crop_height, crop_width))
list(tl, tr, bl, br, center)
}
#' @export
transform_ten_crop.torch_tensor <- function(img, size, vertical_flip = FALSE) {
check_img(img)
if (!length(size) == 2)
value_error("Please provide only 2 dimensions (h, w) for size.")
first_five <- transform_five_crop(img, size)
if (vertical_flip)
img <- transform_vflip(img)
else
img <- transform_hflip(img)
second_five <- transform_five_crop(img, size)
c(first_five, second_five)
}
#' @export
transform_linear_transformation.torch_tensor <- function(img, transformation_matrix,
mean_vector) {
flat_tensor <- img$view(c(1, -1)) - mean_vector
transformed_tensor <- torch::torch_mm(flat_tensor, transformation_matrix)
transformed_tensor$view(img$size())
}
# Other methods -----------------------------------------------------------
#' @export
transform_crop.torch_tensor <- function(img, top, left, height, width) {
check_img(img)
img[.., top:(top + height - 1), left:(left + width - 1)]
}
#' @export
transform_hflip.torch_tensor <- function(img) {
check_img(img)
img$flip(-1)
}
#' @export
transform_vflip.torch_tensor <- function(img) {
check_img(img)
img$flip(-2)
}
#' @export
transform_adjust_brightness.torch_tensor <- function(img, brightness_factor) {
if (brightness_factor < 0)
value_error("brightness factor is negative")
check_img(img)
blend(img, torch::torch_zeros_like(img), brightness_factor)
}
#' @export
transform_adjust_contrast.torch_tensor <- function(img, contrast_factor) {
if (contrast_factor < 0)
value_error("contrast must be positive")
check_img(img)
mean <- torch::torch_mean(transform_rgb_to_grayscale(img)$to(torch::torch_float()))
blend(img, mean, contrast_factor)
}
#' @export
transform_adjust_hue.torch_tensor <- function(img, hue_factor) {
if (hue_factor < -0.5 || hue_factor > 0.5)
value_error("hue_factor must be between -0.5 and 0.5.")
check_img(img)
orig_dtype <- img$dtype
if (img$dtype == torch::torch_uint8())
img <- img$to(dtype = torch::torch_float32())/255
img <-rgb2hsv(img)
hsv <- img$unbind(1)
hsv[[1]] <- hsv[[1]] + hue_factor
hsv[[1]] <- hsv[[1]] %% 1
img <- torch::torch_stack(hsv)
img_hue_adj <- hsv2rgb(img)
if (orig_dtype == torch::torch_uint8())
img_hue_adj <- (img_hue_adj * 255.0)$to(dtype=orig_dtype)
img_hue_adj
}
#' @export
transform_adjust_saturation.torch_tensor <- function(img, saturation_factor) {
if (saturation_factor < 0)
value_error("saturation factor must be positive.")
check_img(img)
blend(img, transform_rgb_to_grayscale(img), saturation_factor)
}
#' @export
transform_rotate.torch_tensor <- function(img, angle, resample = 0, expand = FALSE,
center = NULL, fill = NULL) {
center_f <- c(0.0, 0.0)
if (!is.null(center)) {
img_size <- get_image_size(img)
# Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
center_f <- mapply(function(c, s) 1 * (c - s * 0.5), center, img_size)
}
# due to current incoherence of rotation angle direction between affine and
# rotate implementations we need to set -angle.
matrix <- get_inverse_affine_matrix(center_f, -angle, c(0.0, 0.0), 1.0, c(0.0, 0.0))
rotate_impl(img, matrix=matrix, resample=resample, expand=expand, fill=fill)
}
#' @export
transform_affine.torch_tensor <- function(img, angle, translate, scale, shear,
resample = 0, fillcolor = NULL) {
if (!is.numeric(angle))
value_error("Argument angle should be int or float")
if (!length(translate) == 2)
value_error("translate should be length 2")
if (scale < 0)
value_error("Argument scale should be positive")
if (!is.numeric(shear))
type_error("Shear should be either a single value or a sequence of 2 values")
if (length(shear) == 1)
shear <- c(shear, 0)
img_size <- get_image_size(img)
matrix <- get_inverse_affine_matrix(c(1, 1), angle, translate, scale, shear)
affine_impl(img, matrix=matrix, resample=resample, fillcolor=fillcolor)
}
#' @export
transform_perspective.torch_tensor <- function(img, startpoints, endpoints, interpolation = 2,
fill = NULL) {
not_implemented_error("transform perspective is not implemented yet.")
}
#' @export
transform_rgb_to_grayscale.torch_tensor <- function(img) {
check_img(img)
(0.2989 * img[1] + 0.5870 * img[2] + 0.1140 * img[3])$to(img$dtype)
}
# Helpers -----------------------------------------------------------------
is_tensor_image <- function(x) {
x$dim() >= 2
}
check_img <- function(x) {
if (!is_tensor_image(x))
type_error("tensor is not a torch image.")
}
#' @importFrom utils tail
get_image_size.torch_tensor <- function(img) {
check_img(img)
rev(tail(img$size(), 2))
}
blend <- function(img1, img2, ratio) {
if (img1$is_floating_point())
bound <- 1
else
bound <- 255
(ratio * img1 + (1 - ratio) * img2)$clamp(0, bound)$to(img1$dtype)
}
rgb2hsv <- function(img) {
rgb <- img$unbind(1)
r <- rgb[[1]]; g <- rgb[[2]]; b <- rgb[[3]]
maxc <- torch::torch_max(img, dim=1)[[1]]
minc <- torch::torch_min(img, dim=1)[[1]]
# The algorithm erases S and H channel where `maxc = minc`. This avoids NaN
# from happening in the results, because
# + S channel has division by `maxc`, which is zero only if `maxc = minc`
# + H channel has division by `(maxc - minc)`.
#
# Instead of overwriting NaN afterwards, we just prevent it from occuring so
# we don't need to deal with it in case we save the NaN in a buffer in
# backprop, if it is ever supported, but it doesn't hurt to do so.
eqc <- maxc == minc
cr <- maxc - minc
# Since `eqc => cr = 0`, replacing denominator with 1 when `eqc` is fine.
s <- cr / torch::torch_where(eqc, maxc$new_full(list(), 1), maxc)
# Note that `eqc => maxc = minc = r = g = b`. So the following calculation
# of `h` would reduce to `bc - gc + 2 + rc - bc + 4 + rc - bc = 6` so it
# would not matter what values `rc`, `gc`, and `bc` have here, and thus
# replacing denominator with 1 when `eqc` is fine.
cr_divisor <- torch::torch_where(eqc, maxc$new_full(list(), 1), cr)
rc <- (maxc - r) / cr_divisor
gc <- (maxc - g) / cr_divisor
bc <- (maxc - b) / cr_divisor
hr <- (maxc == r) * (bc - gc)
hg <- ((maxc == g) & (maxc != r)) * (2.0 + rc - bc)
hb <- ((maxc != g) & (maxc != r)) * (4.0 + gc - rc)
h <- (hr + hg + hb)
h <- torch::torch_fmod((h / 6.0 + 1.0), 1.0)
torch::torch_stack(list(h, s, maxc))
}
hsv2rgb <- function(img) {
hsv <- img$unbind(1)
i <- torch::torch_floor(hsv[[1]] * 6)
f <- (hsv[[1]] * 6) - 1
i <- i$to(dtype = torch::torch_int32())
p <- torch::torch_clamp((hsv[[3]] * (1 - hsv[[2]])), 0, 1)
q <- torch::torch_clamp((hsv[[3]] * (1 - hsv[[2]] * f)), 0, 1)
t <- torch::torch_clamp((hsv[[3]] * (1 - f)), 0, 1)
i <- i %% 6
mask <- i == torch::torch_arange(start= 0, end = 5)[,NULL,NULL]
a1 <- torch::torch_stack(list(hsv[[3]], q, p, p, t, hsv[[3]]))
a2 <- torch::torch_stack(list(t, hsv[[3]], hsv[[3]], q, p, p))
a3 <- torch::torch_stack(list(p, p, t, hsv[[3]], hsv[[3]], q))
a4 <- torch::torch_stack(list(a1, a2, a3))
torch::torch_einsum("ijk, xijk -> xjk", list(mask$to(dtype = img$dtype), a4))
}
# https://stackoverflow.com/questions/32370485/convert-radians-to-degree-degree-to-radians
rad2deg <- function(rad) {(rad * 180) / (pi)}
deg2rad <- function(deg) {(deg * pi) / (180)}
# Helper method to compute inverse matrix for affine transformation
# As it is explained in PIL.Image.rotate
# We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1
# where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
# C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
# RSS is rotation with scale and shear matrix
# RSS(a, s, (sx, sy)) =
# = R(a) * S(s) * SHy(sy) * SHx(sx)
# = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(x)/cos(y) - sin(a)), 0 ]
# [ s*sin(a + sy)/cos(sy), s*(-sin(a - sy)*tan(x)/cos(y) + cos(a)), 0 ]
# [ 0 , 0 , 1 ]
#
# where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
# SHx(s) = [1, -tan(s)] and SHy(s) = [1 , 0]
# [0, 1 ] [-tan(s), 1]
#
# Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1
get_inverse_affine_matrix <- function(center, angle, translate, scale, shear) {
rot = deg2rad(angle)
sx <- deg2rad(shear[1])
sy <- deg2rad(shear[2])
cx <- center[1]
cy <- center[2]
tx <- translate[1]
ty <- translate[2]
# RSS without scaling
a <- cos(rot - sy) / cos(sy)
b = -cos(rot - sy) * tan(sx) / cos(sy) - sin(rot)
c = sin(rot - sy) / cos(sy)
d = -sin(rot - sy) * tan(sx) / cos(sy) + cos(rot)
# Inverted rotation matrix with scale and shear
# det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
matrix <- c(d, -b, 0.0, -c, a, 0.0) / scale
# Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
matrix[3] = matrix[3] + matrix[1] * (-cx - tx) + matrix[2] * (-cy - ty)
matrix[6] = matrix[6] + matrix[4] * (-cx - tx) + matrix[5] * (-cy - ty)
# Apply center translation: C * RSS^-1 * C^-1 * T^-1
matrix[3] = matrix[3] + cx
matrix[6] = matrix[6] + cy
matrix
}
assert_grid_transform_inputs <- function(img, matrix, resample, fillcolor,
interpolation_modes, coeffs) {
check_img(img)
}
apply_grid_transform <- function(img, grid, mode) {
need_squeeze <- FALSE
if (img$dim() < 4) {
img <- img$unsqueeze(dim=1)
need_squeeze <- TRUE
}
out_dtype <- img$dtype
need_cast <- FALSE
if (!img$dtype == torch::torch_float32() && !img$dtype == torch::torch_float64()) {
need_cast <- TRUE
img <- img$to(dtype = torch::torch_float32())
}
img <- torch::nnf_grid_sample(img, grid, mode=mode, padding_mode="zeros",
align_corners=FALSE)
if (need_squeeze)
img <- img$squeeze(dim=1)
if (need_cast) {
# it is better to round before cast
img <- torch::torch_round(img)$to(dtype = out_dtype)
}
img
}
# https://github.com/pytorch/pytorch/blob/74b65c32be68b15dc7c9e8bb62459efbfbde33d8/aten/src/ATen/native/
# AffineGridGenerator.cpp#L18
# Difference with AffineGridGenerator is that:
# 1) we normalize grid values after applying theta
# 2) we can normalize by other image size, such that it covers "extend" option like in PIL.Image.rotate
gen_affine_grid <- function(theta, w, h, ow, oh) {
d = 0.5
base_grid = torch::torch_empty(1, oh, ow, 3)
base_grid[.., 1]$copy_(torch::torch_linspace(start = -ow * 0.5 + d, end = ow * 0.5 + d - 1,
steps=ow))
base_grid[.., 2]$copy_(torch::torch_linspace(start = -oh * 0.5 + d, end = oh * 0.5 + d - 1,
steps=oh)$unsqueeze_(-1))
base_grid[.., 3]$fill_(1)
output_grid = base_grid$view(c(1, oh * ow, 3))$bmm(
theta$transpose(2, 3) / torch::torch_tensor(c(0.5 * w, 0.5 * h))
)
output_grid$view(c(1, oh, ow, 2))
}
rotate_compute_output_size <- function(theta, w, h) {
# Inspired of PIL implementation:
# https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054
# pts are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
pts <- torch::torch_tensor(rbind(
c(-0.5 * w, -0.5 * h, 1.0),
c(-0.5 * w, 0.5 * h, 1.0),
c(0.5 * w, 0.5 * h, 1.0),
c(0.5 * w, -0.5 * h, 1.0)
))
new_pts <- pts$view(c(1, 4, 3))$bmm(theta$transpose(2, 3))$view(c(4, 2))
min_vals <- new_pts$min(dim=1)[[1]]
max_vals <- new_pts$max(dim=1)[[1]]
# Truncate precision to 1e-4 to avoid ceil of Xe-15 to 1.0
tol = 1e-4
cmax = torch::torch_ceil((max_vals / tol)$trunc_() * tol)
cmin = torch::torch_floor((min_vals / tol)$trunc_() * tol)
size = cmax - cmin
as.integer(c(size[1]$item(), size[2]$item()))
}
rotate_impl <- function(img, matrix, resample = 0, expand = FALSE, fill= NULL) {
interpolation_modes <- c(
"0" = "nearest",
"2" = "bilinear"
)
assert_grid_transform_inputs(img, matrix, resample, fill, interpolation_modes)
theta <- torch::torch_tensor(matrix)$reshape(c(1, 2, 3))
w <- tail(img$shape, 2)[2]
h <- tail(img$shape, 1)[1]
if (expand) {
o_shape <- rotate_compute_output_size(theta, w, h)
ow <- o_shape[1]
oh <- o_shape[2]
} else {
ow <- w
oh <- h
}
grid <- gen_affine_grid(theta, w=w, h=h, ow=ow, oh=oh)
mode <- interpolation_modes[as.character(as.integer(resample))]
apply_grid_transform(img, grid, mode)
}
affine_impl <- function(img, matrix, resample = 0, fillcolor = NULL) {
interpolation_modes <- c(
"0"= "nearest",
"2"= "bilinear"
)
assert_grid_transform_inputs(img, matrix, resample, fillcolor, interpolation_modes)
theta <- torch::torch_tensor(matrix, dtype=torch::torch_float())$reshape(c(1, 2, 3))
shape <- img$shape
grid <- gen_affine_grid(theta, w=rev(shape)[1], h=rev(shape)[2],
ow=rev(shape)[1], oh=rev(shape)[2])
mode <- interpolation_modes[as.character(resample)]
apply_grid_transform(img, grid, mode)
}
pad_symmetric <- function(img, padding) {
in_sizes <- img$size()
x_indices <- seq_len(tail(in_sizes, 1))
left_indices <- rev(seq_len(padding[1]))
right_indices <- -seq_len(padding[2])
x_indices <- torch::torch_tensor(c(left_indices, x_indices, right_indices),
dtype = torch::torch_long())
y_indices <- seq_len(rev(in_sizes)[2])
top_indices <- rev(seq_len(padding[3]))
bottom_indices <- -seq_len(padding[4])
y_indices <- torch::torch_tensor(c(top_indices, y_indices, bottom_indices),
dtype = torch::torch_long())
ndim <- length(dim(img))
if (ndim == 3)
img[, y_indices[, NULL], x_indices[, NULL]]
else if (ndim == 4)
img[,,y_indices[, NULL], x_indices[, NULL]]
else
runtime_error("Symmetric padding of N-D tensors are not supported yet")
}
#' @export
transform_adjust_gamma.torch_tensor <- function(img, gamma, gain = 1) {
check_img(img)
if (gamma < 0)
value_error("gamma must be non-negative")
result <- img
dtype <- img$dtype
if (!torch::torch_is_floating_point(img))
result <- result/255.0
result <- (gain * result ^ gamma)$clamp(0, 1)
if (!result$dtype == dtype) {
eps <- 1e-3
result <- (255 + 1.0 - eps) * result
}
result <- result$to(dtype = dtype)
result
}
get_perspective_coeffs <- function(startpoints, endpoints) {
a_matrix <- torch::torch_zeros(2 * length(startpoints), 8,
dtype = torch::torch_float())
for (i in seq_along(startpoints)) {
p1 <- endpoints[[i]]
p2 <- startpoints[[i]]
a_matrix[1 + 2*(i-1), ] <- torch::torch_tensor(c(p1[1], p1[2], 2, 1, 1, 1, -p2[1] * p1[1], -p2[1] * p1[2]))
a_matrix[2*i,] <- torch::torch_tensor(c(1, 1, 1, p1[1], p1[2], 2, -p2[2] * p1[1], -p2[2] * p1[1]))
}
b_matrix <- torch::torch_tensor(unlist(startpoints), dtype = torch::torch_float())$view(8)
res <- torch::linalg_lstsq(b_matrix, a_matrix)[[1]]
output <- torch::as_array(res$squeeze(1))
output
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.