Nothing
#' Generate geodesic path.
#'
#' Wrap basis generation method with a function that computes the
#' geodesic interpolation from the previous frame to the next frame, and
#' provides convenient access to all the information about the path.
#'
#' Frozen variables allow us to keep certain values of the projection
#' fixed and generate a geodesic across the subspace generated by those
#'
#' @param current starting projection
#' @param target ending projection
#' @param frozen matrix giving frozen variables, as described in
#' \code{\link{freeze}}
#' @keywords internal
#' @export
#' @return
#' \item{interpolate}{A function with single parameter in [0, 1] that
#' returns an interpolated frame between the current and future frames.
#' 0 gives the current plane, 1 gives the new target frame in plane of
#' current frame.}
#' \item{dist}{The distance, in radians, between the current and target
#' frames.}
#' \item{Fa}{The current frame.}
#' \item{Fz}{The new target frame.}
#' \item{tau}{The principle angles between the current and target frames.}
#' \item{Ga}{The current plane.}
#' \item{Gz}{The target plane.}
#' @examples
#' a <- basis_random(4, 2)
#' b <- basis_random(4, 2)
#' path <- geodesic_path(a, b)
#'
#' path$dist
#' all.equal(a, path$interpolate(0))
#' # Not true generally - a rotated into plane of b
#' all.equal(b, path$interpolate(1))
geodesic_path <- function(current, target, frozen = NULL, ...) {
if (is.null(frozen)) {
# Regular geodesic
geodesic <- geodesic_info(current, target)
interpolate <- function(pos) {
step_fraction(geodesic, pos)
}
} else {
# Frozen geodesic
current_froz <- freeze(current, frozen)
target_froz <- freeze(target, frozen)
geodesic <- geodesic_info(current_froz, target_froz)
interpolate <- function(pos) {
thaw(step_fraction(geodesic, pos), frozen)
}
}
list(
interpolate = interpolate,
Fa = current,
Fz = target,
Ga = geodesic$Ga,
Gz = geodesic$Gz,
tau = geodesic$tau,
dist = proj_dist(current, target)
)
}
#' Calculate information required to interpolate along a geodesic path between
#' two frames.
#'
#' The methdology is outlined in
#' \url{http://www-stat.wharton.upenn.edu/~buja/PAPERS/paper-dyn-proj-algs.pdf}
#' and
#' \url{http://www-stat.wharton.upenn.edu/~buja/PAPERS/paper-dyn-proj-math.pdf},
#' and the code follows the notation outlined in those papers:
#'
#' \itemize{
#' \item p = dimension of data
#' \item d = target dimension
#' \item F = frame, an orthonormal p x d matrix
#' \item Fa = starting frame, Fz = target frame
#' \item Fa'Fz = Va lamda Vz' (svd)
#' \item Ga = Fa Va, Gz = Fz Vz
#' \item tau = principle angles
#' }
#' @keywords internal
#' @param Fa starting frame, will be orthonormalised if necessary
#' @param Fz target frame, will be orthonormalised if necessary
#' @param epsilon epsilon used to determine if an angle is effectively equal
#' to 0
geodesic_info <- function(Fa, Fz, epsilon = 1e-6) {
if (!is_orthonormal(Fa)) {
# message("Orthonormalising Fa")
Fa <- orthonormalise(Fa)
}
if (!is_orthonormal(Fz)) {
# message("Orthonormalising Fz")
Fz <- orthonormalise(Fz)
}
# if (Fa.equivalent(Fz)) return();
# cat("dim Fa",nrow(Fa),ncol(Fa),"dim Fz",nrow(Fz),ncol(Fz),"\n")
# Compute the SVD: Fa'Fz = Va lambda Vz' --------------------------------
sv <- svd(t(Fa) %*% Fz)
# R returns the svd from smallest to largest -------------------------------
nc <- ncol(Fa)
lambda <- sv$d[nc:1]
Va <- sv$u[, nc:1]
Vz <- sv$v[, nc:1]
# Compute frames of principal directions (planes) ------------------------
Ga <- Fa %*% Va
Gz <- Fz %*% Vz
# Form an orthogonal coordinate transformation --------------------------
Ga <- orthonormalise(Ga)
Gz <- orthonormalise(Gz)
Gz <- orthonormalise_by(Gz, Ga)
# Compute and check principal angles -----------------------
tau <- suppressWarnings(acos(lambda))
badtau <- is.nan(tau) | tau < epsilon
Gz[, badtau] <- Ga[, badtau]
tau[badtau] <- 0
list(Va = Va, Ga = Ga, Gz = Gz, tau = tau)
}
#' Step along an interpolated path by fraction of path length.
#'
#' @keywords internal
#' @param interp interpolated path
#' @param fraction fraction of distance between start and end planes
step_fraction <- function(interp, fraction) {
# Interpolate between starting and end planes
# - must multiply column wise (hence all the transposes)
G <- t(
t(interp$Ga) * cos(fraction * interp$tau) +
t(interp$Gz) * sin(fraction * interp$tau)
)
# rotate plane to match frame Fa
orthonormalise(G %*% t(interp$Va))
}
#' Step along an interpolated path by angle in radians.
#'
#' @keywords internal
#' @param interp interpolated path
#' @param angle angle, in radians
step_angle <- function(interp, angle) {
step_fraction(interp, angle / sqrt(sum(interp$tau^2)))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.