Nothing
#' Draw the path that the geodesics took.
#'
#' This computes the projected values of each observation at each step, and
#' allows you to recreate static views of the animated plots.
#'
#' @param history list of bases produced by \code{\link{save_history}}
#' (or otherwise)
#' @param data dataset to be projected on to bases
#' @export
#' @examples
#' path1d <- save_history(flea[, 1:6], grand_tour(1), 3)
#' path2d <- save_history(flea[, 1:6], grand_tour(2), 3)
#'
#' if (require("ggplot2")) {
#' plot(path_curves(path1d))
#' plot(path_curves(interpolate(path1d)))
#'
#' plot(path_curves(path2d))
#' plot(path_curves(interpolate(path2d)))
#'
#' # Instead of relying on the built in plot method, you might want to
#' # generate your own. Here are few examples of alternative displays:
#'
#' df <- path_curves(path2d)
#' ggplot(data = df, aes(x = step, y = value, group = obs:var, colour = var)) +
#' geom_line() +
#' facet_wrap(~obs)
#'
#' library(tidyr)
#' ggplot(
#' data = pivot_wider(df,
#' id_cols = c(obs, step),
#' names_from = var, names_prefix = "Var",
#' values_from = value
#' ),
#' aes(x = Var1, y = Var2)
#' ) +
#' geom_point() +
#' facet_wrap(~step) +
#' coord_equal()
#' }
path_curves <- function(history, data = attr(history, "data")) {
history <- as.list(history)
n <- length(history)
project <- function(basis) {
proj <- data %*% basis
data.frame(
obs = factor(row(proj)),
var = factor(col(proj)),
value = as.vector(proj)
)
}
projections <- do.call("rbind", lapply(history, project))
projections$step <- rep(seq_len(n), each = nrow(data) * ncol(history[[1]]))
class(projections) <- c("path_curve", class(projections))
projections
}
#' Plot history curves.
#'
#' The default plot method is a line plot with step on the x axis and
#' value on the y axis. Each observation is drawn with a different line
#' line and the plot is facetted by variable. This is rather similar in
#' spirit to a parallel coordinates plot or Andrews curves.
#'
#' For alternative ways of plotting this data, see
#' \code{\link{path_curves}}
#' @keywords internal
#' @export
plot.path_curve <- function(x, ...) {
step <- NULL # quiet R CMD check warning
ggplot2::ggplot(data = x, ggplot2::aes(x = step, y = value, group = obs)) +
ggplot2::geom_line() +
ggplot2::facet_grid(var ~ .)
}
# globalVariables(c("value", "obs"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.