Nothing
###
### Fit models for HCC data presented in
###
### On Nonparanormal Likelihoods
### by Torsten Hothorn, UZH
###
set.seed(290875)
pkgs <- c("openxlsx", "tram", "survival")
ip <- rownames(installed.packages())
if (any(!pkgs %in% ip))
install.packages(pkgs[!pkgs %in% ip], repos = "https://stat.ethz.ch/CRAN/")
OK <- sapply(pkgs, require, character.only = TRUE)
if (!all(OK))
stop("package(s) ", paste(pkgs[!OK], collapse = ", "), " not available")
### Load data
dat <- read.xlsx("https://datadryad.org/api/v2/files/44697/download", sheet = 1)
HCC <- with(dat, data.frame(id = 1:nrow(dat),
x = factor(HCC_studyGr),
AFP = log(AFP_ng_per_ml),
PIV = log(PIVKA_delete_range),
OPN = log(OPN),
DKK = log(DKK)))
### limits of detection
PIVm <- max(HCC$PIV)
AFPm <- max(HCC$AFP)
### marginal location-scale models
mDKK <- BoxCox(
DKK ~ ### probit, h(DKK) via Bernstein
x ### location non-HCC / HCC
| x, ### scale non-HCC / HCC
data = HCC)
mOPN <- BoxCox(OPN ~ x | x, data = HCC)
HCC$PIVi <- with(HCC, R(
Surv(PIV, event = PIV < PIVm), ### right censoring
as.R.interval = TRUE)) ### empirical likelihood
mPIV <- BoxCox(PIVi ~
x | x, ### location-scale
data = HCC)
HCC$AFPi <- with(HCC, R(
Surv(AFP, event = AFP < AFPm), ### right censoring
as.R.interval = TRUE)) ### empirical likelihood
mAFP <- BoxCox(AFPi ~ x | x, data = HCC)
### joint estimation of marginal and Gaussian copula parameters, s = 2
### location-scale transformation discriminant analysis
m <- Mmlt(mDKK, mOPN, mPIV, mAFP, data = HCC)
logLik(m)
### marginal parameters
coef(m, type = "marginal")
### copula parameter: Lambda
coef(m, type = "Lambdapar")
### standard errors for all parameters
sqrt(diag(vcov(m)))
### convex approximations
## pseudo
mp <- Mmlt(mDKK, mOPN, mPIV, mAFP, data = HCC, fit = "pseudo")
logLik(mp)
## sequential
ms <- Mmlt(mDKK, mOPN, mPIV, mAFP, data = HCC, fit = "sequential")
logLik(ms)
## ACS
ma <- Mmlt(mDKK, mOPN, mPIV, mAFP, data = HCC, fit = "ACS", ACSiter = 1)
logLik(ma)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.