Nothing
#' @title SEQIC Indicator 7 - Delayed Arrival to Definitive Care
#'
#' @description
#'
#' `r lifecycle::badge("experimental")`
#'
#' Computes SEQIC Indicator 7, which measures the proportion of trauma patients
#' arriving at the definitive care facility trauma centers (level I–IV) more
#' than 180 minutes after injury. This indicator identifies delays in definitive
#' care.
#'
#' @inheritParams seqic_indicator_1
#' @inheritParams seqic_indicator_6
#' @inheritDotParams nemsqar::nemsqa_binomial_confint conf.level correct
#'
#' @details This function:
#' \itemize{
#' \item Filters the dataset to trauma center levels I through IV.
#' \item Deduplicates the dataset by `unique_incident_id`.
#' \item Creates a logical flag for arrivals occurring more than 180 minutes
#' after injury.
#' \item Identifies definitive care records where the patient arrived greater
#' than 180 minutes after the time of injury.
#' \item Returns a summarized tibble with the number of such cases
#' (numerator), total eligible records (denominator), and the proportion.
#' \item Optionally includes 95% confidence intervals if `calculate_ci` is
#' specified.
#' }
#'
#' @note
#'
#' The user must ensure all columns are correctly passed and that time values
#' are numeric and measured in minutes.
#'
#' @return A tibble summarizing SEQIC Indicator 7 results. Includes numerator,
#' denominator, and proportion. 95% confidence intervals are included if
#' requested.
#'
#' @examples
#' # Packages
#' library(dplyr)
#' library(traumar)
#'
#' # Create test data for Indicator 7
#' test_data <- tibble::tibble(
#' id = as.character(1:10),
#' trauma_level = rep(c("I", "II", "III", "IV", "V"), times = 2),
#' time_to_arrival = c(200, 100, 220, 150, 400, 181, 90, 179, 240, 178),
#' transfer_out = c("No", "No", "No", "No", "Yes", "No", "No", "No", "No",
#' "No")
#' )
#'
#' # Run the indicator function
#' traumar::seqic_indicator_7(
#' data = test_data,
#' level = trauma_level,
#' unique_incident_id = id,
#' time_from_injury_to_arrival = time_to_arrival,
#' transfer_out_indicator = transfer_out
#' )
#'
#' @author Nicolas Foss Ed.D., MS
#'
#' @export
seqic_indicator_7 <- function(
data,
level,
included_levels = c("I", "II", "III", "IV"),
unique_incident_id,
time_from_injury_to_arrival,
transfer_out_indicator,
groups = NULL,
calculate_ci = NULL,
...
) {
###___________________________________________________________________________
### Data validation
###___________________________________________________________________________
# Validate that `data` is a data frame or tibble.
if (!is.data.frame(data) && !tibble::is_tibble(data)) {
cli::cli_abort(
c(
"{.var data} must be of class {.cls data.frame} or {.cls tibble}.",
"i" = "{.var data} was an object of class {.cls {class(data)}}."
)
)
}
# make the `level` column accessible for validation
level_check <- tryCatch(
{
data |> dplyr::pull({{ level }})
},
error = function(e) {
cli::cli_abort(
"It was not possible to validate {.var level}, please check this column in the function call.",
call = rlang::expr(seqic_indicator_7())
)
}
)
if (!is.character(level_check) && !is.factor(level_check)) {
cli::cli_abort(
c(
"{.var level} must be of class {.cls character} or {.cls factor}.",
"i" = "{.var level} was an object of class {.cls {class(level_check)}}."
)
)
}
# make the `unique_incident_id` column accessible for validation
unique_incident_id_check <- tryCatch(
{
data |> dplyr::pull({{ unique_incident_id }})
},
error = function(e) {
cli::cli_abort(
"It was not possible to validate {.var unique_incident_id}, please check this column in the function call.",
call = rlang::expr(seqic_indicator_7())
)
}
)
# Validate `unique_incident_id` to ensure it's either character or factor.
if (
!is.character(unique_incident_id_check) &&
!is.factor(unique_incident_id_check) &&
!is.numeric(unique_incident_id_check)
) {
cli::cli_abort(
c(
"{.var unique_incident_id} must be of class {.cls character}, {.cls numeric}, or {.cls factor}.",
"i" = "{.var unique_incident_id} was an object of class {.cls {class(unique_incident_id_check)}}."
)
)
}
# Validate that `transfer_out_indicator` is character, factor, or logical.
transfer_out_indicator_check <- tryCatch(
{
data |> dplyr::pull({{ transfer_out_indicator }})
},
error = function(e) {
cli::cli_abort(
"It was not possible to validate {.var transfer_out_indicator}, please check this column in the function call.",
call = rlang::expr(seqic_indicator_7())
)
}
)
if (
!is.character(transfer_out_indicator_check) &&
!is.factor(transfer_out_indicator_check) &&
!is.logical(transfer_out_indicator_check)
) {
cli::cli_abort(
c(
"{.var transfer_out_indicator} must be of class {.cls character}, {.cls factor}, or {.cls logical}.",
"i" = "{.var transfer_out_indicator} was an object of class {.cls {class(transfer_out_indicator_check)}}."
)
)
}
# Validate that `time_from_injury_to_arrival` is numeric.
time_from_injury_to_arrival_check <- tryCatch(
{
data |> dplyr::pull({{ time_from_injury_to_arrival }})
},
error = function(e) {
cli::cli_abort(
"It was not possible to validate {.var time_from_injury_to_arrival}, please check this column in the function call.",
call = rlang::expr(seqic_indicator_7())
)
}
)
if (!is.numeric(time_from_injury_to_arrival_check)) {
cli::cli_abort(
c(
"{.var time_from_injury_to_arrival} must be of class {.cls numeric}.",
"i" = "{.var time_from_injury_to_arrival} was an object of class {.cls {class(time_from_injury_to_arrival_check)}}."
)
)
}
# Check if all elements in groups are strings (i.e., character vectors)
if (!is.null(groups)) {
if (!is.character(groups)) {
cli::cli_abort(c(
"All elements in {.var groups} must be strings.",
"i" = "You passed an object of class {.cls {class(groups)}} to {.var groups}."
))
}
}
# Check if all groups exist in the `data`
if (!all(groups %in% names(data))) {
invalid_vars <- groups[!groups %in% names(data)]
cli::cli_abort(
"The following group variable(s) are not valid columns in {.var data}: {paste(invalid_vars, collapse = ', ')}"
)
}
# Validate `calculate_ci` argument: must be NULL or "wilson" or
# "clopper-pearson".
if (!is.null(calculate_ci)) {
attempt <- try(
match.arg(calculate_ci, choices = c("wilson", "clopper-pearson")),
silent = TRUE
)
if (inherits(attempt, "try-error")) {
cli::cli_abort(
c(
"If {.var calculate_ci} is not {cli::col_blue('NULL')}, it must be {.val wilson} or {.val clopper-pearson}.",
"i" = "{.var calculate_ci} was {.val {calculate_ci}}."
)
)
}
calculate_ci <- attempt
}
# Validate the `included_levels` argument
if (
!is.character(included_levels) &&
!is.numeric(included_levels) &&
!is.factor(included_levels)
) {
cli::cli_abort(
c(
"{.var included_levels} must be of class {.cls character}, {.cls factor}, or {.cls numeric}.",
"i" = "{.var included_levels} was an object of class {.cls {class(included_levels)}}."
)
)
}
###___________________________________________________________________________
### Measure Calculation
###___________________________________________________________________________
# Filter only trauma center levels I–IV
seqic_7 <- data |>
dplyr::filter({{ level }} %in% included_levels) |>
# Deduplicate records by unique incident ID
dplyr::distinct({{ unique_incident_id }}, .keep_all = TRUE) |>
# Create flag for arrivals >180 minutes after injury
dplyr::mutate(
arrive_greater_than_180 = {{ time_from_injury_to_arrival }} > 180
) |>
# Summarize: count patients meeting the criteria (numerator) and total
# (denominator)
dplyr::summarize(
numerator_7 = sum(
{{ transfer_out_indicator }} %in%
c(FALSE, "No") &
arrive_greater_than_180 == TRUE,
na.rm = TRUE
),
denominator_7 = dplyr::n(),
seqic_7 = dplyr::if_else(
denominator_7 > 0,
numerator_7 / denominator_7,
NA_real_
),
.by = {{ groups }}
)
# Optionally compute confidence intervals
if (!is.null(calculate_ci)) {
# Apply binomial confidence interval function
seqic_7 <- seqic_7 |>
dplyr::bind_cols(
nemsqar::nemsqa_binomial_confint(
data = seqic_7,
x = numerator_7,
n = denominator_7,
method = calculate_ci,
...
) |>
dplyr::select(lower_ci, upper_ci) |>
dplyr::rename(lower_ci_7 = lower_ci, upper_ci_7 = upper_ci)
)
}
# Add label if ungrouped
if (is.null(groups)) {
seqic_7 <- seqic_7 |>
tibble::add_column(data = "population/sample", .before = "numerator_7")
} else {
# Arrange by grouping variables
seqic_7 <- seqic_7 |>
dplyr::arrange(!!!rlang::syms(groups))
}
return(seqic_7)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.