Nothing
#' @title View the Current Patient Population Case Mix Compared to the Major
#' Trauma Study Case Mix
#'
#' @description
#'
#' This function compares the current patient population's case mix (based on
#' probability of survival, Ps) to the MTOS case mix by binning patients into
#' specific Ps ranges. It returns the fraction of patients in each range and
#' compares it to the MTOS distribution. For more information on the methods
#' used in these calculations, please see Flora (1978) and Boyd et al. (1987).
#'
#' @param df A data frame containing patient data.
#' @param Ps_col The name of the column containing the probability of survival
#' (Ps) values.
#' @param outcome_col The name of the column containing the binary outcome data
#' (valid values are 1 or TRUE for alive, 0 or FALSE for dead).
#'
#' @details
#'
#' The function checks whether the `outcome_col` contains values representing a
#' binary outcome. It also ensures that `Ps_col` contains numeric values within
#' the range 0 to 1. If any values exceed 1, a warning is issued. The patients
#' are then grouped into predefined Ps ranges, and the function compares the
#' fraction of patients in each range with the MTOS case mix distribution.
#'
#' Like other statistical computing functions, `trauma_case_mix()` is happiest
#' without missing data. It is best to pass complete probability of survival
#' and outcome data to the function for optimal performance. With smaller
#' datasets, this is especially helpful. However, `trauma_case_mix()` will
#' throw a warning about missing values, if any exist in `Ps_col` and/or
#' `outcome_col`.
#'
#' @return A data frame containing:
#' \itemize{
#' \item \code{Ps_range}: The probability of survival range category.
#' \item \code{current_fraction}: The fraction of patients in the current
#' dataset within each Ps range.
#' \item \code{MTOS_distribution}: The reference distribution of patients in
#' each Ps range based on the MTOS study.
#' \item \code{survivals}: The number of observed survivors (outcome = 1) in
#' each Ps range.
#' \item \code{predicted_survivals}: The sum of predicted survivals (sum of
#' Ps values) in each Ps range.
#' \item \code{deaths}: The number of observed deaths (outcome = 0) in each
#' Ps range.
#' \item \code{predicted_deaths}: The sum of predicted deaths (sum of 1 - Ps
#' values) in each Ps range.
#' \item \code{count}: The total number of patients in each Ps range.
#' }
#'
#' @note
#'
#' This function will produce the most reliable and interpretable results when
#' using a dataset that has one row per patient, with each column being a
#' feature.
#'
#' @examples
#' # Generate example data
#' set.seed(123)
#'
#' # Parameters
#' # Total number of patients
#' n_patients <- 5000
#'
#' # Arbitrary group labels
#' groups <- sample(x = LETTERS[1:2], size = n_patients, replace = TRUE)
#'
#' # Trauma types
#' trauma_type_values <- sample(
#' x = c("Blunt", "Penetrating"),
#' size = n_patients,
#' replace = TRUE
#' )
#'
#' # RTS values
#' rts_values <- sample(
#' x = seq(from = 0, to = 7.8408, by = 0.005),
#' size = n_patients,
#' replace = TRUE
#' )
#'
#' # patient ages
#' ages <- sample(
#' x = seq(from = 0, to = 100, by = 1),
#' size = n_patients,
#' replace = TRUE
#' )
#'
#' # ISS scores
#' iss_scores <- sample(
#' x = seq(from = 0, to = 75, by = 1),
#' size = n_patients,
#' replace = TRUE
#' )
#'
#' # Generate survival probabilities (Ps)
#' Ps <- traumar::probability_of_survival(
#' trauma_type = trauma_type_values,
#' age = ages,
#' rts = rts_values,
#' iss = iss_scores
#' )
#'
#' # Simulate survival outcomes based on Ps
#' survival_outcomes <- rbinom(n_patients, size = 1, prob = Ps)
#'
#' # Create data frame
#' data <- data.frame(Ps = Ps, survival = survival_outcomes, groups = groups) |>
#' dplyr::mutate(death = dplyr::if_else(survival == 1, 0, 1))
#'
#' # Compare the current case mix with the MTOS case mix
#' trauma_case_mix(data, Ps_col = Ps, outcome_col = death)
#'
#' @export
#'
#' @author Nicolas Foss, Ed.D., MS
#'
trauma_case_mix <- function(df, Ps_col, outcome_col) {
# Evaluate column names passed in
Ps_col <- rlang::enquo(Ps_col)
outcome_col <- rlang::enquo(outcome_col)
# Check if the dataframe is valid
if (!is.data.frame(df)) {
cli::cli_abort("The first argument must be a dataframe.")
}
# Pull and check the outcome column
binary_data <- df |> dplyr::pull(!!outcome_col)
# Ensure the column is either logical or numeric
if (!is.logical(binary_data) && !is.numeric(binary_data)) {
cli::cli_abort(
"The {.var outcome_col} must be of type logical (TRUE/FALSE) or numeric (1/0)."
)
}
# Get unique non-missing values
non_missing <- stats::na.omit(binary_data)
# Validate type and values
if (is.logical(binary_data)) {
# Logical vector: ensure only TRUE/FALSE (no coercion needed)
invalid_vals <- setdiff(unique(non_missing), c(TRUE, FALSE))
if (length(invalid_vals) > 0) {
cli::cli_abort(
"The {.var outcome_col} contains invalid logical values: {.val {invalid_vals}}."
)
}
} else if (is.numeric(binary_data)) {
# Numeric vector: ensure strictly 0 or 1
invalid_vals <- setdiff(unique(non_missing), c(0, 1))
if (length(invalid_vals) > 0) {
cli::cli_abort(
"The {.var outcome_col} contains numeric values other than 0 and 1: {.val {invalid_vals}}."
)
}
} else {
# Not logical or numeric
cli::cli_abort(
"The {.var outcome_col} must be either logical (TRUE/FALSE) or numeric (1/0)."
)
}
# Warn if missing
if (any(is.na(binary_data))) {
cli::cli_warn(
"Missing values detected in {.var outcome_col}; please apply an appropriate treatment to the missings and rerun {.fn trauma_case_mix}."
)
}
# Check if Ps column is numeric
Ps_data <- df |> dplyr::pull(!!Ps_col)
if (!is.numeric(Ps_data)) {
cli::cli_abort("The probability of survival (Ps) column must be numeric.")
}
# Check if Ps column is continuous (values between 0 and 1)
if (any(Ps_data < 0 | Ps_data > 1, na.rm = T)) {
cli::cli_abort(
"The probability of survival (Ps) values must be between 0 and 1."
)
}
# Check if Ps column is missing
if (any(is.na(Ps_data))) {
cli::cli_warn(
"Missing values detected in {.var Ps_col}; please apply an appropriate treatment to the missings and rerun {.fn trauma_case_mix}."
)
}
# Set the Ps range order for the function
Ps_range_order <- c(
"0.96 - 1.00",
"0.91 - 0.95",
"0.76 - 0.90",
"0.51 - 0.75",
"0.26 - 0.50",
"0.00 - 0.25"
)
# Define the MTOS Ps distribution
MTOS_distribution <- tibble::tibble(
Ps_range = factor(
c(
"0.96 - 1.00",
"0.91 - 0.95",
"0.76 - 0.90",
"0.51 - 0.75",
"0.26 - 0.50",
"0.00 - 0.25"
),
levels = Ps_range_order
),
MTOS_distribution = c(0.842, 0.053, 0.052, 0, 0.043, 0.01)
)
# Bin patients into Ps ranges and calculate current fractions
fractions_set <- df |>
dplyr::mutate(
!!Ps_col := Ps_data,
!!outcome_col := binary_data,
Ps_range = dplyr::case_when(
!!Ps_col >= 0.96 ~ "0.96 - 1.00",
!!Ps_col >= 0.91 ~ "0.91 - 0.95",
!!Ps_col >= 0.76 ~ "0.76 - 0.90",
!!Ps_col >= 0.51 ~ "0.51 - 0.75",
!!Ps_col >= 0.26 ~ "0.26 - 0.50",
TRUE ~ "0.00 - 0.25"
)
) |>
dplyr::summarize(
survivals = sum(!!outcome_col == 1, na.rm = TRUE),
predicted_survivals = sum(!!Ps_col, na.rm = TRUE),
deaths = sum(!!outcome_col == 0, na.rm = TRUE),
predicted_deaths = sum(1 - !!Ps_col, na.rm = TRUE),
count = dplyr::n(),
current_fraction = dplyr::n() / nrow(df),
.by = Ps_range
) |>
dplyr::left_join(MTOS_distribution, by = dplyr::join_by(Ps_range)) |>
dplyr::arrange(Ps_range) |>
dplyr::relocate(current_fraction, .after = Ps_range) |>
dplyr::relocate(MTOS_distribution, .after = current_fraction)
# Return the result as a tibble
return(fractions_set)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.