Nothing
#' Evaluation of forecasts using score decompositions
#'
#' A score decomposition splits the mean score into the three components of
#' miscalibration (MCB), discrimination (DSC), and uncertainty (UNC). Plotting
#' the DSC component against the MCB component allows for a quick visual
#' inspection of predictive performance for many forecasting methods.
#'
#' @param score A string specifying the score function.
#' One of: `"Brier_score"` (default), `"log_score"`, `"MR_score"`.
#' @param ... Unused.
#' @inheritParams triptych
#'
#' @return A `triptych_mcbdsc` object, that is a `vctrs_vctr` subclass, and has
#' a length equal to number of forecasting methods supplied in `x`. Each entry
#' is named according to the corresponding forecasting method,
#' and contains a list of named objects:
#' \itemize{
#' \item `estimate`: A data frame of the score decomposition.
#' \item `region`: An empty list. Adding confidence regions is not yet supported.
#' \item `x`: The numeric vector of original forecasts.
#' }
#' Access is most convenient through [estimates()], [regions()], and [forecasts()].
#'
#' @seealso Accessors: [estimates()], [regions()], [forecasts()], [observations()]
#'
#' Visualization: [plot.triptych_mcbdsc()], [autoplot.triptych_mcbdsc()]
#'
#' @examples
#' data(ex_binary, package = "triptych")
#'
#' md <- mcbdsc(ex_binary)
#' md
#'
#' autoplot(md)
#' estimates(md)
#'
#' @name mcbdsc
NULL
#' @rdname mcbdsc
#' @export
mcbdsc <- function(x, y_var = "y", ..., y = NULL, score = "Brier_score") {
x <- tibble::as_tibble(x)
if (is.null(y)) {
y_var <- tidyselect::vars_pull(names(x), !!rlang::enquo(y_var))
y <- x[[y_var]]
x <- dplyr::select(x, !y_var)
}
y <- vec_cast(y, to = double())
score <- vec_cast(score, to = character())
stopifnot(identical(length(score), 1L))
x <- dplyr::mutate_all(x, vec_cast, to = double())
vec_cast(x, to = new_triptych_mcbdsc(y = y, score = score))
}
new_triptych_mcbdsc <- function(x = list(), y = double(), score = character()) {
new_vctr(x, y = y, score = score, class = "triptych_mcbdsc")
}
# formatting
#' @export
format.triptych_mcbdsc <- function(x, ...) {
sprintf("<named list[%i]>", sapply(x, length))
}
#' @export
vec_ptype_abbr.triptych_mcbdsc <- function(x, ..., prefix_named = FALSE, suffix_shape = TRUE) {
"trpt_mcbdsc"
}
# coercion
#' @exportS3Method vctrs::vec_ptype2
vec_ptype2.triptych_mcbdsc <- function(x, y, ..., x_arg = "", y_arg = "") {
UseMethod("vec_ptype2.triptych_mcbdsc")
}
#' @export
vec_ptype2.triptych_mcbdsc.triptych_mcbdsc <- function(x, y, ..., x_arg = "", y_arg = "") {
if (!has_compatible_observations(x, y)) {
stop_incompatible_type(
x,
y,
x_arg = x_arg,
y_arg = y_arg,
details = "Observations are not compatible."
)
}
new_triptych_mcbdsc(list(), observations(x))
}
# casting
#' @param r A reference triptych_mcbdsc object whose attributes are used for casting.
#'
#' @rdname mcbdsc
#' @export
as_mcbdsc <- function(x, r) {
stopifnot(inherits(r, "triptych_mcbdsc"))
x <- tibble::as_tibble(x)
x <- dplyr::mutate_all(x, vec_cast, to = double())
vec_cast(x, to = r)
}
#' @exportS3Method vctrs::vec_cast
vec_cast.triptych_mcbdsc <- function(x, to, ...) {
UseMethod("vec_cast.triptych_mcbdsc")
}
#' @export
vec_cast.triptych_mcbdsc.triptych_mcbdsc <- function(x, to, ..., x_arg = "", to_arg = "") {
if (!has_compatible_observations(x, to)) {
stop_incompatible_cast(
x,
to,
x_arg = x_arg,
to_arg = to_arg,
details = "Observations are not compatible."
)
}
x
}
#' @export
vec_cast.triptych_mcbdsc.list <- function(x, to, ...) {
x <- lapply(x, vec_cast, to = to)
f <- \(...) vec_c(..., .name_spec = "{outer}_{inner}")
do.call(f, x)
}
#' @export
vec_cast.triptych_mcbdsc.data.frame <- function(x, to, ...) {
x <- lapply(x, vec_cast, to = to)
f <- \(...) vec_c(..., .name_spec = "{outer}_{inner}")
do.call(f, x)
}
#' @export
vec_cast.triptych_mcbdsc.tbl_df <- function(x, to, ...) {
x <- lapply(x, vec_cast, to = to)
f <- \(...) vec_c(..., .name_spec = "{outer}_{inner}")
do.call(f, x)
}
#' @export
vec_cast.triptych_mcbdsc.double <- function(x, to, ...) {
y <- observations(to)
score <- attr(to, "score")
f <- get(score)
mscore <- mean(f(x, y))
mscore_r <- mean(f(recalibrate_mean(x, y), y))
mscore_u <- mean(f(mean(y), y))
list(
estimate = tibble::tibble(
mean_score = mscore,
MCB = mscore - mscore_r,
DSC = mscore_u - mscore_r,
UNC = mscore_u
),
region = list(),
x = x
) |>
list() |>
new_triptych_mcbdsc(y = y, score = score)
}
Brier_score <- function(x, y) (x - y)^2
log_score <- function(x, y) ifelse(y > 0.5, -log(x), -log(1 - x))
MR_score <- function(x, y) {
dplyr::case_when(
x < 0.5 & y > 0.5 ~ 1.0,
x > 0.5 & y < 0.5 ~ 1.0,
x == 0.5 ~ 0.5,
TRUE ~ 0.0
)
}
#' @export
eval_diag.triptych_mcbdsc <- function(x, ...) {
purrr::map(x, .f = \(o) with(o$estimate, c(mean_score, MCB, DSC, UNC)))
}
#' @export
observations.triptych_mcbdsc <- function(x, ...) {
attr(x, "y")
}
#' @export
forecasts.triptych_mcbdsc <- function(x, ...) {
f <- function(o) tibble::tibble(x = o$x)
g <- function(...) vec_rbind(..., .names_to = "forecast")
purrr::map(x, f) |>
do.call(g, args = _)
}
#' @rdname estimates
#' @export
estimates.triptych_mcbdsc <- function(x, ...) {
f <- function(o) o$estimate
g <- function(...) vec_rbind(..., .names_to = "forecast")
purrr::map(x, f) |>
do.call(g, args = _)
}
#' @rdname regions
#' @export
regions.triptych_mcbdsc <- function(x, ...) {
f <- function(o) o$region
g <- function(...) vec_rbind(..., .names_to = "forecast")
if (!any(sapply(x, \(o) tibble::is_tibble(o$region)))) return(NULL)
purrr::map(x, f) |>
do.call(g, args = _)
}
# add_confidence.triptych_mcbdsc <- function(x, level = 0.9, method = "resampling_cases", ...) {
# m <- get(method)(x, level, ...)
# for (i in seq_along(x)) {
# x[[i]]$region <- m[[i]]
# }
# x
# }
#
# resampling_cases.triptych_mcbdsc <- function(x, level = 0.9, n_boot = 1000, ...) {
# #saved_seed <- .Random.seed
# y <- observations(x)
# warning("Experimental: Bootstrapping may be unreliable for the MCB component.")
# purrr::map(
# .x = x,
# level = level,
# n_boot = n_boot,
# .f = function(o, level, n_boot) {
# bootstrap_sample_cases(o$x, y, n_boot, mcbdsc) |>
# unlist() |>
# matrix(nrow = n_boot, byrow = TRUE) |>
# list(s = _)
# }
# )
# }
#
# resampling_Bernoulli.triptych_mcbdsc <- function(x, level = 0.9, n_boot = 1000, resample_x = TRUE, ...) {
# #saved_seed <- .Random.seed
# y <- observations(x)
# n_obs <- length(y)
# warning("Experimental: Bootstrapping may be unreliable for the MCB component.")
#
# purrr::map(
# .x = x,
# level = level,
# n_boot = n_boot,
# .f = function(o, level, n_boot) {
# xr <- recalibrate_mean(o$x, y)
# bootstrap_sample_Bernoulli(o$x, xr, n_boot, mcbdsc, resample_x = resample_x) |>
# unlist() |>
# matrix(nrow = n_boot, byrow = TRUE) |>
# list(s = _)
# }
# )
# }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.