inst/doc/demo_ensembling.R

## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## ----setup, warning=FALSE,message=FALSE---------------------------------------
library(knitr)
library(tsissm)
library(xts)
library(tsaux)
library(data.table)
library(zoo)

## ----fig.width=6,fig.height=3-------------------------------------------------
data("us_retail_sales")
opar <- par(mfrow = c(1,1))
y <- as.xts(us_retail_sales)
par(mar = c(2,2,2,2))
plot(as.zoo(y), ylab = "Sales (Mil's S)", xlab = "", main = "Advance Retail Sales")
grid()
par(opar)

## -----------------------------------------------------------------------------
train <- y["/2021"]
test <- y["2022/"]
lambda_pre_estimate <- box_cox(lambda = NA)$transform(train) |> attr("lambda")
xreg <- auto_regressors(train, frequency = 12, lambda = lambda_pre_estimate, sampling = "months", h = nrow(test), method = "sequential", 
                        check.rank = TRUE, discard.cval = 3.5, maxit.iloop = 10, maxit.oloop = 10, 
                        forc_dates = index(test))
spec <- issm_modelspec(train, auto = TRUE, slope = c(TRUE, FALSE), seasonal = TRUE, 
                             seasonal_harmonics = list(c(3,4,5)), xreg = xreg$xreg[index(train), ], 
                             seasonal_frequency = 12, ar = 0:2, ma = 0:2, lambda = lambda_pre_estimate, top_n = 4)
mod <- spec |> estimate()

## -----------------------------------------------------------------------------
mod$models[[1]] |> summary() |> as_flextable()

## -----------------------------------------------------------------------------
mod$table |> kable()

## -----------------------------------------------------------------------------
mod$correlation |> kable()

## -----------------------------------------------------------------------------
p_top <- mod$models[[1]] |> predict(h = nrow(test), seed = 200, nsim = 4000, newxreg = xreg$xreg[index(test),])
p_all <- mod |> predict(h = nrow(test), seed = 200, nsim = 4000, newxreg = xreg$xreg[index(test),])
p_ensemble <- p_all |> tsensemble(weights = rep(1/4,4))

## ----fig.width=6,fig.height=3-------------------------------------------------
opar <- par(mfrow = c(1,1))
par(mar = c(2,2,2,2))
p_top |> plot(n_original = 50, gradient_color =  "aliceblue", interval_type = 2, interval_color = "steelblue", interval_width = 1, median_width = 1.5, xlab = "")
p_ensemble$distribution |> plot(gradient_color =  "aliceblue", interval_type = 3, interval_color = "green", interval_width = 1, median_width = 1.5, 
                                median_type = 1, median_color = "green", add = TRUE)
lines(index(test), as.numeric(test), col = 2, lwd = 1.5)
legend("topleft", c("Historical","Actual (Forecast)", "Top (Forecast)", "Ensemble (Forecast)"), col = c("red","red","black","green"), lty = c(1,1.5,1.5,1.5), bty = "n")
par(opar)

## -----------------------------------------------------------------------------
tab <- rbind(tsmetrics(p_top, actual = test, alpha = 0.1),
             tsmetrics(p_ensemble, actual = test, alpha = 0.1))
rownames(tab) <- c("Top","Ensemble")
tab |> kable()

Try the tsissm package in your browser

Any scripts or data that you put into this service are public.

tsissm documentation built on Aug. 8, 2025, 6:08 p.m.