inst/doc/demo_missing_data.R

## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## ----setup, warning=FALSE,message=FALSE---------------------------------------
library(tsissm)
library(xts)
library(data.table)
library(tsaux)
library(knitr)
library(zoo)

## ----fig.width=6,fig.height=3-------------------------------------------------
data("maunaloa")
opar <- par(mfrow = c(1,1))
par(mar = c(2,2,2,2))
plot(zoo(maunaloa$co2, maunaloa$date), type = "l", xlab = "", ylab = "", main = "Mauna Loa Daily Average CO2")
par(opar)

## ----fig.width=6,fig.height=3-------------------------------------------------
d <- data.table(date = maunaloa$date, value = maunaloa$co2)
d[, year := year(date)]
s <- d[,list(.N), by = "year"]
opar <- par(mfrow = c(1,1))
par(mar = c(2,2,2,2))
barplot(s$N, names.arg = s$year, main = "Observations/Year", col = "steelblue")
par(opar)

## ----fig.width=6,fig.height=3-------------------------------------------------
co2 <- xts(maunaloa$co2, maunaloa$date)
train <- co2["/2023"]
test <- co2["2024/"]
spec_naive <- issm_modelspec(train, slope = TRUE, seasonal = TRUE, seasonal_frequency = 320, seasonal_harmonics = 2)
# fixed slope
spec_naive$parmatrix[parameters == "beta", initial := 0]
spec_naive$parmatrix[parameters == "beta", lower := 0]
spec_naive$parmatrix[parameters == "beta", estimate := 0]
mod_naive <- estimate(spec_naive, scores = FALSE)
p_naive <- predict(mod_naive, h = length(test), nsim = 3000, forc_dates = index(test))
opar <- par(mfrow = c(1,1))
par(mar = c(2,2,2,2))
plot(p_naive, n_original = 600, gradient_color = "yellow", interval_color = "orange", main = "CO2 [Naive] Model Prediction", median_width = 1, xlab = "")
lines(index(test), as.numeric(test), col = 3)
legend("topleft", c("Median Forecast","Actual"), col = c(1,3), lty = 1, bty = "n")
par(opar)

## -----------------------------------------------------------------------------
full_dates <- seq(index(co2)[1], tail(index(co2),1), by = "days")
co2_full <- xts(rep(as.numeric(NA), length(full_dates)), full_dates)
co2_full <- cbind(co2_full, co2, join = "left")
co2_full <- co2_full[,-1]

## ----fig.width=6,fig.height=3-------------------------------------------------
train_full <- co2_full["/2023"]
test_full <- co2_full["2024/"]
spec <- issm_modelspec(train_full, slope = TRUE, seasonal = TRUE, seasonal_frequency = 366, seasonal_harmonics = 5, distribution = "norm")
# fixed slope
spec$parmatrix[parameters == "beta", initial := 0]
spec$parmatrix[parameters == "beta", lower := 0]
spec$parmatrix[parameters == "beta", estimate := 0]
mod <- estimate(spec, scores = FALSE)
p <- predict(mod, h = length(test_full), nsim = 3000, forc_dates = index(test_full))
opar <- par(mfrow = c(1,1))
par(mar = c(2,2,2,2))
plot(p, n_original = 600, gradient_color = "yellow", interval_color = "orange", main = "CO2 [Correct] Model Prediction", median_width = 1, xlab = "")
lines(index(test_full), as.numeric(test_full), col = 3)
legend("topleft", c("Median Forecast","Actual"), col = c(1,3), lty = 1, bty = "n")
par(opar)

## -----------------------------------------------------------------------------
use <- which(!is.na(as.numeric(test_full)))
tab <- data.frame(MAPE = c(mape(as.numeric(test), as.numeric(p_naive$analytic_mean)) * 100, 
                           mape(as.numeric(test_full)[use], as.numeric(p$analytic_mean)[use]) * 100),
                  CRPS = c(crps(as.numeric(test), p_naive$distribution), crps(as.numeric(test_full)[use], p$distribution[,use])))
rownames(tab) <- c("Naive","Correct")
colnames(tab) <- c("MAPE (%)", "CRPS")
tab |> kable(digits = 2)

Try the tsissm package in your browser

Any scripts or data that you put into this service are public.

tsissm documentation built on Aug. 8, 2025, 6:08 p.m.