Nothing
test_that("post_distance_within works with intended input",{
data(fit_data)
results <- post_distance_within(fit_data[[1]],
pred = FALSE,
n_draws = 100,
comp = "frob")
expect_type(results, "list")
expect_true(all(c("comp", "mod_one", "mod_two", "beta", "pcor") %in% colnames(results)))
})
test_that("post_distance_within works with sequential sampling",{
data(fit_data)
results <- post_distance_within(fit_data[[1]],
pred = FALSE,
n_draws = 100,
comp = "frob",
sampling_method = "sequential")
expect_type(results, "list")
expect_true(all(c("comp", "mod_one", "mod_two", "beta", "pcor") %in% colnames(results)))
})
test_that("post_distance_within works with differenct comps", {
data(fit_data)
results <- post_distance_within(fit_data[[1]],
pred = FALSE,
n_draws = 100,
comp = "l1")
expect_type(results, "list")
expect_true(all(c("comp", "mod_one", "mod_two", "beta", "pcor") %in% colnames(results)))
results <- post_distance_within(fit_data[[1]],
pred = FALSE,
n_draws = 100,
comp = "maxdiff")
expect_type(results, "list")
expect_true(all(c("comp", "mod_one", "mod_two", "beta", "pcor") %in% colnames(results)))
})
test_that("post_distance_within breaks when input is not a list",{
expect_error(post_distance_within(matrix(rnorm(100)),
pred = FALSE,
n_draws = 100,
comp = "frob"))
})
test_that("post_distance_within accepts indices",{
data(fit_data)
results <- post_distance_within(fit_data[[1]],
pred = FALSE,
n_draws = 100,
comp = "frob",
indices = list(beta = 1:2, pcor = 3:4))
expect_type(results, "list")
expect_true(all(c("comp", "mod_one", "mod_two", "beta", "pcor") %in% colnames(results)))
})
test_that("post_distance_within works for posterior predictive lists",{
data(fit_data)
# Create fake posterior predictive draws
pp_list <- list()
pp_list$fit <- lapply(1:100, function(x) fit_data[[1]])
results <- post_distance_within(pp_list,
pred = TRUE,
n_draws = 50,
comp = "frob")
expect_type(results, "list")
expect_true(all(c("comp", "mod_one", "mod_two", "beta", "pcor") %in% colnames(results)))
})
test_that("post_distance_within works for posterior predictive lists with indices",{
data(fit_data)
# Create fake posterior predictive draws
pp_list <- list()
pp_list$fit <- lapply(1:100, function(x) fit_data[[1]])
results <- post_distance_within(pp_list,
pred = TRUE,
n_draws = 50,
comp = "frob",
indices = list(beta = 1:2, pcor = 3:4))
expect_type(results, "list")
expect_true(all(c("comp", "mod_one", "mod_two", "beta", "pcor") %in% colnames(results)))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.