Nothing
#' @importFrom dplyr filter select full_join mutate bind_rows case_when vars
#' @importFrom dplyr all_of ungroup slice bind_cols pull sample_n desc anti_join
#' @importFrom dplyr distinct arrange rename mutate_if starts_with inner_join
#' @importFrom dplyr last
#' @importFrom purrr map_int
#' @importFrom rlang call2 ns_env is_quosure is_quosures quo_get_expr call_name
#' @importFrom rlang is_false eval_tidy expr sym syms env_get is_function :=
#' @importFrom rlang is_missing %||% caller_env
#' @importFrom glue glue glue_collapse
#' @importFrom dials is_unknown encode_unit
#' @importFrom stats sd qt qnorm dnorm pnorm predict model.matrix setNames
#' @importFrom stats model.matrix model.response model.frame update median
#' @importFrom yardstick rsq rmse accuracy roc_auc brier_survival brier_class
#' @importFrom tidyr unnest nest
#' @importFrom GPfit GP_fit
#' @importFrom parsnip get_from_env required_pkgs
#' @importFrom recipes all_predictors all_outcomes
#' @importFrom ggplot2 ggplot aes xlab geom_point geom_errorbar facet_wrap ylab
#' @importFrom ggplot2 facet_grid geom_line aes_string aes_ scale_x_continuous
#' @importFrom cli cli_alert_danger cli_alert_info cli_alert_warning
#' @importFrom cli cli_alert_success cli_alert
#' @importFrom cli cli_inform cli_warn cli_abort qty
#' @importFrom tibble obj_sum size_sum
#' @import rlang
# ------------------------------------------------------------------------------
# Only a small number of functions in workflows.
# It is worth just importing everything.
#' @import workflows
# ------------------------------------------------------------------------------
utils::globalVariables(
c(
".",
"engine",
"name",
"func",
"parsnip",
"call_name",
".step",
"call_info",
"component",
"component_id",
"id",
"control",
".pred",
".metric",
".estimator",
".estimate",
"n",
"note",
"object",
"splits",
"grid",
"resamples",
".iter",
"mean",
".submodels",
"metrics",
"data",
".mean",
".sd",
"iteration",
"pkg",
".pred_class",
"std_err",
"const",
"objective",
"delta",
"sd_trunc",
"snr",
"z",
"..val",
"max_val",
"has_submodel",
"res",
".extracts",
".metrics",
"value",
".notes",
".loss",
".bound",
".column",
".totals",
".value",
"direction",
".config",
"Freq",
"Prediction",
"Truth",
".seed",
".order",
".iter_model",
".iter_preprocessor",
".iter_config",
".msg_model",
"# resamples",
"seed",
"pre",
"type",
"rowwise",
".best",
"location",
"msg",
"..object",
".eval_time",
".pred_survival",
".pred_time",
".weight_censored",
"nice_time",
"time_metric",
".lower",
".upper",
"i",
"results",
"term",
".alpha",
".method",
"old_term",
".lab_pre",
".model",
".num_models",
"model_stage",
"predict_stage",
"user",
"num"
)
)
# ------------------------------------------------------------------------------
release_bullets <- function() {
c(
"**Do this before checks!**. Update dependencies with `devtools::install_dev_deps()` and update the test objects via `R CMD BATCH --vanilla inst/test_objects.R`."
)
}
# ------------------------------------------------------------------------------
# data on model prediction types
# Will predictions have one value per row and should be in a list column?
dyn_surv_types <- c("survival", "hazard")
dyn_quant_types <- "quantile"
dyn_types <- c(dyn_surv_types, dyn_quant_types)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.