tests/testthat/test-int_pctl.R

test_that("percentile intervals - resamples only", {
  skip_if_not_installed("modeldata")
  skip_if_not_installed("rsample", minimum_version = "1.2.1.9000")
  library(rsample)
  library(parsnip)

  data(Sacramento, package = "modeldata")
  set.seed(13)
  sac_rs <- vfold_cv(Sacramento)
  lm_res <-
    linear_reg() |>
    fit_resamples(
      log10(price) ~ beds + baths + sqft + type + latitude + longitude,
      resamples = sac_rs,
      control = control_resamples(save_pred = TRUE)
    )
  template <- dplyr::tibble(
    .metric = character(0),
    .estimator = character(0),
    .lower = numeric(0),
    .estimate = numeric(0),
    .upper = numeric(0),
    .config = character(0)
  )
  set.seed(1)
  expect_snapshot(int_res_1 <- int_pctl(lm_res, times = 500))
  expect_equal(int_res_1[0, ], template)
  expect_equal(nrow(int_res_1), 2)

  expect_snapshot(
    int_pctl(lm_res, times = 2000, metrics = "rmse"),
    error = TRUE
  )

  # check to make sure that alpha works
  set.seed(1)
  expect_snapshot(int_res_2 <- int_pctl(lm_res, times = 500, alpha = .25))
  expect_true(int_res_2$.lower[1] > int_res_1$.lower[1])
  expect_true(int_res_2$.upper[1] < int_res_1$.upper[1])
})


test_that("percentile intervals - last fit", {
  skip_if_not_installed("modeldata")
  skip_if_not_installed("rsample", minimum_version = "1.1.1.9000")
  library(rsample)
  library(parsnip)
  library(yardstick)

  data(Sacramento, package = "modeldata")
  set.seed(1)
  sac_split <- initial_split(Sacramento)

  lm_res <-
    linear_reg() |>
    last_fit(
      log10(price) ~ beds + baths + sqft + type + latitude + longitude,
      metrics = metric_set(mae),
      split = sac_split
    )
  template <- dplyr::tibble(
    .metric = character(0),
    .estimator = character(0),
    .lower = numeric(0),
    .estimate = numeric(0),
    .upper = numeric(0),
    .config = character(0)
  )
  set.seed(1)
  expect_snapshot(int_res_1 <- int_pctl(lm_res, times = 200))
  expect_equal(int_res_1[0, ], template)
  expect_equal(nrow(int_res_1), 1)
  set.seed(1)
  expect_snapshot(int_res_2 <- int_pctl(lm_res, times = 200))
  expect_equal(int_res_1, int_res_2)
})


test_that("percentile intervals - grid + bayes tuning", {
  skip_if_not_installed("modeldata")
  skip_if_not_installed("C50")
  skip_if_not_installed("rsample", minimum_version = "1.1.1.9000")
  library(rsample)
  library(parsnip)
  library(yardstick)

  data("two_class_dat", package = "modeldata")
  set.seed(1)
  cls_rs <- vfold_cv(two_class_dat)

  c5_res <-
    decision_tree(min_n = tune()) |>
    set_engine("C5.0") |>
    set_mode("classification") |>
    tune_grid(
      Class ~ .,
      resamples = cls_rs,
      grid = dplyr::tibble(min_n = c(5, 20, 40)),
      metrics = metric_set(sens),
      control = control_grid(save_pred = TRUE)
    )
  template <- dplyr::tibble(
    min_n = numeric(0),
    .metric = character(0),
    .estimator = character(0),
    .lower = numeric(0),
    .estimate = numeric(0),
    .upper = numeric(0),
    .config = character(0)
  )

  expect_snapshot(int_res_1 <- int_pctl(c5_res))
  expect_equal(int_res_1[0, ], template)
  expect_equal(nrow(int_res_1), 3)

  # ------------------------------------------------------------------------------

  set.seed(92)
  c5_bo_res <-
    decision_tree(min_n = tune()) |>
    set_engine("C5.0") |>
    set_mode("classification") |>
    tune_bayes(
      Class ~ .,
      resamples = cls_rs,
      initial = c5_res,
      iter = 1,
      metrics = metric_set(sens),
      control = control_bayes(save_pred = TRUE)
    )
  template <- dplyr::tibble(
    min_n = integer(0),
    .metric = character(0),
    .estimator = character(0),
    .lower = numeric(0),
    .estimate = numeric(0),
    .upper = numeric(0),
    .config = character(0),
    .iter = integer(0)
  )
  set.seed(1)
  int_res_2 <- int_pctl(c5_bo_res)
  expect_equal(int_res_2[0, ], template)
  expect_equal(nrow(int_res_2), 4)
  set.seed(1)
  int_res_3 <- int_pctl(c5_bo_res, event_level = "second")
  expect_true(all(int_res_3$.estimate < int_res_2$.estimate))

  ###

  set.seed(1)
  int_res_2_reps <- int_pctl(c5_bo_res, keep_replicates = TRUE)
  expect_named(
    int_res_2_reps,
    # fmt: skip
    c("min_n", ".metric", ".estimator", ".lower", ".estimate", ".upper",
      ".config", ".iter", ".values")
  )

  qnts <- quantile(
    int_res_2_reps$.values[[1]]$estimate,
    probs = c(0.025, 0.5, 0.975)
  )
  expect_equal(
    c(
      int_res_2_reps$.lower[1],
      int_res_2_reps$.estimate[1],
      int_res_2_reps$.upper[1]
    ),
    as.vector(qnts),
    tolerance = 0.001
  )

  # ------------------------------------------------------------------------------

  c5_mixed_res <-
    decision_tree(min_n = tune()) |>
    set_engine("C5.0") |>
    set_mode("classification") |>
    tune_grid(
      Class ~ .,
      resamples = cls_rs,
      grid = dplyr::tibble(min_n = c(20, 40)),
      metrics = metric_set(roc_auc, sens),
      control = control_grid(save_pred = TRUE)
    )
  template <- dplyr::tibble(
    min_n = numeric(0),
    .metric = character(0),
    .estimator = character(0),
    .lower = numeric(0),
    .estimate = numeric(0),
    .upper = numeric(0),
    .config = character(0)
  )
  set.seed(2093)
  int_res_4 <- int_pctl(c5_mixed_res)
  expect_equal(int_res_4[0, ], template)
  expect_equal(nrow(int_res_4), 4)
})


test_that("percentile intervals - grid tuning with validation set", {
  skip_if_not_installed("modeldata")
  skip_if_not_installed("C50")
  skip_if_not_installed("rsample", minimum_version = "1.1.1.9000")
  library(rsample)
  library(parsnip)
  library(yardstick)

  data("two_class_dat", package = "modeldata")
  set.seed(1)
  cls_split <- initial_validation_split(two_class_dat, prop = c(.8, .15))
  cls_rs <- validation_set(cls_split)

  c5_res <-
    decision_tree(min_n = tune()) |>
    set_engine("C5.0") |>
    set_mode("classification") |>
    tune_grid(
      Class ~ .,
      resamples = cls_rs,
      grid = dplyr::tibble(min_n = c(5, 20, 40)),
      metrics = metric_set(sens),
      control = control_grid(save_pred = TRUE)
    )
  template <- dplyr::tibble(
    min_n = numeric(0),
    .metric = character(0),
    .estimator = character(0),
    .lower = numeric(0),
    .estimate = numeric(0),
    .upper = numeric(0),
    .config = character(0)
  )

  expect_snapshot(int_res_1 <- int_pctl(c5_res))
  expect_equal(int_res_1[0, ], template)
  expect_equal(nrow(int_res_1), 3)
})

Try the tune package in your browser

Any scripts or data that you put into this service are public.

tune documentation built on Nov. 5, 2025, 5:41 p.m.