tests/testthat/test-loop-over-all-stages-post-no-estimation-or-tuning.R

# These tests reference results generated by tune 1.3.0. The code to generate
# them (and the results) are found in the `inst` directory.

test_that("verifying loop_over_all_stages, no submodels, no post estimation or tuning", {
  skip_if_not_installed("modeldata")
  skip_if_not_installed("kknn")

  load(system.file(
    "regression_tests",
    "simple_example.RData",
    package = "tune"
  ))

  # ------------------------------------------------------------------------------

  set.seed(1)
  dat <- modeldata::sim_regression(1000)
  rs <- vfold_cv(dat)

  rs_split <- rs$splits[[1]]
  rs_args <- rsample::.get_split_args(rs)

  rs_iter <- tune:::vec_list_rowwise(rs) |>
    purrr::pluck(1) |>
    mutate(
      .seeds = tune:::get_parallel_seeds(1)
    )

  # ------------------------------------------------------------------------------

  mod <- nearest_neighbor(neighbors = 11, weight_func = tune()) |>
    set_mode("regression")
  wflow <- workflow(outcome ~ ., mod, reg_post)
  grd <- wflow |> extract_parameter_set_dials() |> grid_regular()

  static_1 <- tune:::make_static(
    wflow,
    param_info = wflow |> extract_parameter_set_dials(),
    grid = grd,
    metrics = metric_set(rmse, rsq),
    eval_time = NULL,
    split_args = rs_args,
    control = control_grid()
  )

  data_1 <- tune:::get_data_subsets(wflow, rs_split, rs_args)
  static_1 <- tune:::update_static(static_1, data_1)
  static_1$y_name <- "outcome"

  simple_res <- tune:::loop_over_all_stages(rs_iter, grd, static_1)
  expect_named(simple_res, c(".metrics", ".notes", "outcome_names", "id"))
  expect_true(nrow(simple_res) == 1)

  # A linear transformation so R^2 should be the same
  exp_rsq_mtr <-
    simple_metrics |>
    dplyr::filter(id == "Fold01" & .metric == "rsq") |>
    dplyr::select(all_of(names(simple_res$.metrics[[1]]))) |>
    arrange(weight_func) |>
    dplyr::select(-.config)

  obs_rsq_simple_mtr <-
    simple_res$.metrics[[1]] |>
    dplyr::filter(.metric == "rsq") |>
    arrange(weight_func) |>
    dplyr::select(-.config)

  expect_equal(obs_rsq_simple_mtr, exp_rsq_mtr)

  # rmse should be bad
  exp_rmse_mtr <-
    simple_metrics |>
    dplyr::filter(id == "Fold01" & .metric == "rmse") |>
    dplyr::select(all_of(names(simple_res$.metrics[[1]]))) |>
    arrange(weight_func) |>
    dplyr::select(expected = .estimate, weight_func)

  obs_rmse_simple_mtr <-
    simple_res$.metrics[[1]] |>
    dplyr::filter(.metric == "rmse") |>
    arrange(weight_func) |>
    dplyr::select(obs = .estimate, weight_func)

  rmse_diff <-
    full_join(exp_rmse_mtr, obs_rmse_simple_mtr, by = "weight_func") |>
    mutate(diffs = obs - expected)

  expect_true(all(rmse_diff$diffs > 0))
})

test_that("verifying loop_over_all_stages, submodels, no post estimation or tuning", {
  skip_if_not_installed("modeldata")
  skip_if_not_installed("kknn")

  load(system.file(
    "regression_tests",
    "submodel_example.RData",
    package = "tune"
  ))

  ctrl <- tune::control_grid()

  # ------------------------------------------------------------------------------

  set.seed(1)
  dat <- modeldata::sim_regression(1000)
  rs <- vfold_cv(dat)

  rs_split <- rs$splits[[1]]
  rs_args <- rsample::.get_split_args(rs)

  rs_iter <- tune:::vec_list_rowwise(rs) |>
    purrr::pluck(1) |>
    mutate(
      .seeds = tune:::get_parallel_seeds(1)
    )

  # ------------------------------------------------------------------------------

  rec <- recipe(outcome ~ ., data = dat) |>
    step_pca(all_numeric_predictors(), num_comp = tune())

  mod <- nearest_neighbor(neighbors = tune("k"), weight_func = tune()) |>
    set_mode("regression")

  submodel_wflow <- workflow(rec, mod, reg_post)

  # fmt: skip
  submodel_grid <-
    tibble::tribble(
      ~k,   ~weight_func, ~num_comp,
      9L,  "rectangular",        2L,
      14L,  "rectangular",        2L,
      20L,  "rectangular",        2L,
      4L,   "triangular",        2L,
      9L,   "triangular",        2L,
      14L,   "triangular",        2L,
      20L,   "triangular",        2L,
      4L, "epanechnikov",        2L,
      9L, "epanechnikov",        2L,
      14L, "epanechnikov",        2L,
      20L, "epanechnikov",        2L,
      4L,  "rectangular",       10L,
      9L,  "rectangular",       10L,
      14L,  "rectangular",       10L,
      20L,  "rectangular",       10L,
      4L,   "triangular",       10L,
      9L,   "triangular",       10L,
      14L,   "triangular",       10L,
      20L,   "triangular",       10L,
      4L, "epanechnikov",       10L,
      9L, "epanechnikov",       10L,
      14L, "epanechnikov",       10L,
      20L, "epanechnikov",       10L
    )

  # ------------------------------------------------------------------------------

  static_1 <- tune:::make_static(
    submodel_wflow,
    param_info = submodel_wflow |> extract_parameter_set_dials(),
    grid = submodel_grid,
    metrics = metric_set(rmse, rsq),
    eval_time = NULL,
    split_args = rs_args,
    control = ctrl
  )

  data_1 <- tune:::get_data_subsets(submodel_wflow, rs_split, rs_args)
  static_1 <- tune:::update_static(static_1, data_1)
  static_1$y_name <- "outcome"

  submodel_res <- tune:::loop_over_all_stages(rs_iter, submodel_grid, static_1)
  expect_named(submodel_res, c(".metrics", ".notes", "outcome_names", "id"))
  expect_true(nrow(submodel_res) == 1)

  # A linear transformation so R^2 should be the same
  exp_rsq_mtr <-
    submodel_metrics |>
    dplyr::filter(id == "Fold01" & .metric == "rsq") |>
    dplyr::select(all_of(names(submodel_res$.metrics[[1]]))) |>
    arrange(weight_func, k, num_comp) |>
    dplyr::select(-.config)

  obs_rsq_submodel_mtr <-
    submodel_res$.metrics[[1]] |>
    dplyr::filter(.metric == "rsq") |>
    arrange(weight_func, k, num_comp) |>
    dplyr::select(-.config)

  expect_equal(obs_rsq_submodel_mtr, exp_rsq_mtr)

  # rmse should be bad
  exp_rmse_mtr <-
    submodel_metrics |>
    dplyr::filter(id == "Fold01" & .metric == "rmse") |>
    dplyr::select(all_of(names(submodel_res$.metrics[[1]]))) |>
    arrange(weight_func, k, num_comp) |>
    dplyr::select(expected = .estimate, weight_func, k, num_comp)

  obs_rmse_submodel_mtr <-
    submodel_res$.metrics[[1]] |>
    dplyr::filter(.metric == "rmse") |>
    arrange(weight_func, k, num_comp) |>
    dplyr::select(obs = .estimate, weight_func, k, num_comp)

  rmse_diff <-
    full_join(
      exp_rmse_mtr,
      obs_rmse_submodel_mtr,
      by = c("weight_func", "k", "num_comp")
    ) |>
    mutate(diffs = obs - expected)

  expect_true(all(rmse_diff$diffs > 0))
})

test_that("verifying loop_over_all_stages, submodels only, no post estimation or tuning", {
  skip_if_not_installed("modeldata")
  skip_if_not_installed("kknn")
  skip_if_not_installed("probably")

  load(system.file(
    "regression_tests",
    "submodel_only_example.RData",
    package = "tune"
  ))

  ctrl <- tune::control_grid()

  # ------------------------------------------------------------------------------

  set.seed(1)
  dat <- modeldata::sim_classification(1000)
  rs <- vfold_cv(dat)

  rs_split <- rs$splits[[1]]
  rs_args <- rsample::.get_split_args(rs)

  rs_iter <- tune:::vec_list_rowwise(rs) |>
    purrr::pluck(1) |>
    mutate(
      .seeds = tune:::get_parallel_seeds(1)
    )

  # ------------------------------------------------------------------------------

  mod <- nearest_neighbor(neighbors = tune(), weight_func = "triangular") |>
    set_mode("classification")

  submodel_only_wflow <- workflow(class ~ ., mod, cls_tenth)

  submodel_only_grid <- tibble(neighbors = 3:10)

  # ------------------------------------------------------------------------------

  static_1 <- tune:::make_static(
    submodel_only_wflow,
    param_info = submodel_only_wflow |> extract_parameter_set_dials(),
    grid = submodel_only_grid,
    metrics = metric_set(accuracy, roc_auc, brier_class),
    eval_time = NULL,
    split_args = rs_args,
    control = ctrl
  )

  data_1 <- tune:::get_data_subsets(submodel_only_wflow, rs_split, rs_args)
  static_1 <- tune:::update_static(static_1, data_1)
  static_1$y_name <- "class"

  submodel_only_res <- tune:::loop_over_all_stages(
    rs_iter,
    submodel_only_grid,
    static_1
  )
  expect_named(
    submodel_only_res,
    c(".metrics", ".notes", "outcome_names", "id")
  )
  expect_true(nrow(submodel_only_res) == 1)

  # Thresholding so accuracy should be different and Brier and ROC should be
  # unchanged
  exp_prob_mtr <-
    submodel_only_metrics |>
    dplyr::filter(id == "Fold01" & .metric != "accuracy") |>
    dplyr::select(all_of(names(submodel_only_res$.metrics[[1]]))) |>
    arrange(neighbors, .metric) |>
    dplyr::select(-.config)

  obs_prob_submodel_only_mtr <-
    submodel_only_res$.metrics[[1]] |>
    dplyr::filter(.metric != "accuracy") |>
    arrange(neighbors, .metric) |>
    dplyr::select(-.config)

  expect_equal(obs_prob_submodel_only_mtr, exp_prob_mtr)

  # accuracy should be worse
  exp_acc_mtr <-
    submodel_only_metrics |>
    dplyr::filter(id == "Fold01" & .metric == "accuracy") |>
    dplyr::select(all_of(names(submodel_only_res$.metrics[[1]]))) |>
    arrange(neighbors, .metric) |>
    dplyr::select(expected = .estimate, neighbors, .metric)

  obs_acc_submodel_only_mtr <-
    submodel_only_res$.metrics[[1]] |>
    dplyr::filter(.metric == "accuracy") |>
    arrange(neighbors, .metric) |>
    dplyr::select(obs = .estimate, neighbors, .metric)

  rmse_diff <-
    full_join(
      exp_acc_mtr,
      obs_acc_submodel_only_mtr,
      by = c("neighbors", ".metric")
    ) |>
    mutate(diffs = obs - expected)

  expect_true(all(rmse_diff$diffs < 0))
})

Try the tune package in your browser

Any scripts or data that you put into this service are public.

tune documentation built on Sept. 1, 2025, 5:10 p.m.