Description Usage Arguments Details Value Author(s) References Examples
This function allows you to derive uncertainty intervals for probit regression
when there is missing data in the binary outcome. The uncertainty intervals
can be used as a sensitivity analysis to ignorability (missing at random), and
are derived by maximum likelihood. Note that rho
=0 render the same results as
a complete case analysis.
1 2 |
out.formula |
Formula for outcome regression. |
mis.formula |
Formula for missingness mechanism. If NULL the same covariates as in the outcome regression will be used. |
data |
data.frame containing the variables in the formula. |
rho |
Vector containing the values of |
progress |
If TRUE prints out process time for each maximization of the likelihood. |
max.grid |
Maximum distance between two elements in |
alpha |
Default 0.05 corresponding to a confidence level of 95 for CI and UI. |
method |
Maximization method to be passed through |
In order to visualize the results, you can use plot.uiprobit
or profile.uiprobit
.
A list containing:
coef |
Estimated coefficients (outcome regression) for different values of |
rho |
The values of |
vcov |
Covariance matrix. |
ci |
Confidence intervals for different values of |
ui |
Uncertainty intervals. |
out.model |
Outcome regression model when rho=0. |
mis.model |
Regression model for missingness mechanism (selection). |
se |
Standard errors from outcome regression. |
value |
Value of maximum likelihood for different values of |
y |
Outcome vector. |
z |
Indicator variable of observed outcome. |
X.y |
Covariate matrix for outcome regression. |
X.z |
Covariate matrix for missingness mechanism (selection regression model). |
max.info |
Information about the maximization procedure. Includes whether it |
Minna Genbäck
Genbäck, M., Ng, N., Stanghellini, E., de Luna, X. (2018). Predictors of Decline in Self-reported Health: Addressing Non-ignorable Dropout in Longitudinal Studies of Aging. European journal of ageing, 15(2), 211-220.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | library(MASS)
n<-500
delta<-c(0.5,0.6,0.1,-1,1)
beta<-c(-0.3,-0.5,0,-0.4,-0.3)
X<-cbind(rep(1,n),rnorm(n),runif(n),rbinom(n,2,0.5),rbinom(n,1,0.5))
x<-X[,-1]
rho=0.4
error<-mvrnorm(n,c(0,0),matrix(c(1,rho,rho,1),2))
zstar<-X%*%delta+error[,1]
z<-as.numeric(zstar>0)
ystar<-X%*%beta+error[,2]
y<-as.integer(ystar>0)
y[z==0]<-NA
data=data.frame(y=y,x1=x[,1],x2=x[,2],x3=x[,3],x4=x[,4])
m<-ui.probit(y~x1+x2+x3+x4,data=data,rho=c(0,0.5))
m
plot(m)
profile(m)
|
Optimization for rho = 0.1
Time elapsed: 0.709 s
Optimization for rho = 0.2
Time elapsed: 0.734 s
Optimization for rho = 0.3
Time elapsed: 0.695 s
Optimization for rho = 0.4
Time elapsed: 0.783 s
Optimization for rho = 0.5
Time elapsed: 0.7 s
Call:
ui.probit(out.formula = y ~ x1 + x2 + x3 + x4, data = data, rho = c(0, 0.5))
Confidence intervals (CI) derived assuming ignorable dropout (rho=0)
Uncertainty intervals (UI) derived assuming 0<=rho<=0.5
Est ci ui
(Intercept) -0.033 (-0.474, 0.408) (-0.75, 0.408)
x1 -0.493 (-0.708, -0.278) (-0.708, -0.106)
x2 -0.165 (-0.772, 0.443) (-0.772, 0.459)
x3 -0.243 (-0.539, 0.052) (-0.716, 0.052)
x4 -0.502 (-0.88, -0.124) (-0.88, 0.105)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.