Nothing
#' Gamma distribution maximum likelihood estimation
#'
#' Uses Newton-Raphson to estimate the parameters of the Birnbaum--Saunders distribution.
#' The parameter `mu` is set to `0`, hence only `alpha` and `beta` are estmated.
#'
#' For the density function of the Birnbaum--Saunders distribution see
#' [BirnbaumSaunders][extraDistr::dfatigue].
#'
#' @param x a (non-empty) numeric vector of data values.
#' @param na.rm logical. Should missing values be removed?
#' @param ... `reltol` is the relative accuracy requested, defaults
#' to `.Machine$double.eps^0.25`. `iterlim` is a positive integer
#' specifying the maximum number of iterations to be performed before the
#' program is terminated (defaults to `100`).
#' @return `mlfatigue` returns an object of [class][base::class] `univariateML`.
#' This is a named numeric vector with maximum likelihood estimates for
#' `alpha` and `beta`, with `mu=0`, and the following attributes:
#' \item{`model`}{The name of the model.}
#' \item{`density`}{The density associated with the estimates.}
#' \item{`logLik`}{The loglikelihood at the maximum.}
#' \item{`support`}{The support of the density.}
#' \item{`n`}{The number of observations.}
#' \item{`call`}{The call as captured my `match.call`}
#' @examples
#' mlfatigue(precip)
#' @references From, S. G., & Li, L. (2006). Estimation of the parameters of the Birnbaum<U+2013>Saunders distribution. Communications in Statistics: Theory and Methods, 35(12), 2157<U+2013>2169. https://doi.org/10.1080/03610920600853563
#' @export
mlfatigue <- function(x, na.rm = FALSE, ...) {}
univariateML_metadata$mlfatigue <- list(
"model" = "Birnbaum-Saunders",
"density" = "extraDistr::dfatigue",
"support" = intervals::Intervals(c(0, Inf), closed = c(TRUE, FALSE)),
"names" = c("alpha", "beta", "mu"),
"default" = c(3, 2, 0)
)
mlfatigue_ <- function(x, ...) {
n <- length(x)
x_bar <- mean(x)
x_inv_bar <- n / sum(1 / x)
f_over_df <- function(beta) {
xi <- n / sum(1 / (x + beta))
dxi <- sum(1 / (x + beta)^2) * xi^2 / n
f <- beta^2 - beta * (2 * x_inv_bar + xi) + x_inv_bar * (x_bar + xi)
df <- 2 * beta - (2 * x_inv_bar + xi) - beta * dxi + x_inv_bar * dxi
f / df
}
# Starting parameter: Method of moments solution.
beta0 <- sum(sqrt(x)) / sum(1 / sqrt(x))
beta <- newton_raphson_1d(f_over_df, beta0, ...)
alpha <- sqrt(x_bar / beta + beta / x_inv_bar)
estimates <- c(alpha = alpha, beta = beta, mu = 0)
logLik <- sum(extraDistr::dfatigue(x, alpha, beta, 0, log = TRUE))
list(estimates = estimates, logLik = logLik)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.