Nothing
#' Inverse Burr distribution maximum likelihood estimation
#'
#' The maximum likelihood estimator fails to exist when the data contains no values
#' strictly greater than 1. Then the likelihood converges
#' to the likelihood of the [Pareto distribution][mlpareto] in this case.
#'
#' `mlinvburr(x)` calls `mlburr(1/x)` internally.
#'
#' For the density function of the Inverse Burr distribution see [Inverse Burr][actuar::dinvburr].
#'
#' @param x a (non-empty) numeric vector of data values.
#' @param na.rm logical. Should missing values be removed?
#' @param ... currently affects nothing.
#' @return `mlburr` returns an object of [class][base::class] `univariateML`.
#' This is a named numeric vector with maximum likelihood estimates for
#' `shape1` and `shape2` and the following attributes:
#' \item{`model`}{The name of the model.}
#' \item{`density`}{The density associated with the estimates.}
#' \item{`logLik`}{The loglikelihood at the maximum.}
#' \item{`support`}{The support of the density.}
#' \item{`n`}{The number of observations.}
#' \item{`call`}{The call as captured my `match.call`}
#' @examples
#' mlburr(abalone$length)
#' @seealso [Inverse Burr][actuar::dinvburr] for the Inverse Burr density.
#' @references Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous
#' Univariate Distributions, Volume 1, Chapter 20. Wiley, New York.
#' @export
mlinvburr <- function(x, na.rm = FALSE, ...) {}
univariateML_metadata$mlinvburr <- list(
"model" = "Inverse Burr",
"density" = "actuar::dinvburr",
"support" = intervals::Intervals(c(0, Inf), closed = c(FALSE, FALSE)),
"names" = c("shape1", "shape2"),
"default" = c(1, 2)
)
mlinvburr_ <- function(x, ...) {
params <- mlburr_(x)$estimates
list(
estimates = params,
logLik = sum(actuar::dinvburr(x, params[1], params[2], log = TRUE))
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.