Nothing
#' Nakagami distribution maximum likelihood estimation
#'
#' The maximum likelihood estimates of `shape` and `scale` are calculated by
#' calling `mlgamma` on the transformed data.
#'
#' For the density function of the Nakagami distribution see
#' [Nakagami][nakagami::Nakagami].
#'
#' @param x a (non-empty) numeric vector of data values.
#' @param na.rm logical. Should missing values be removed?
#' @param ... passed to [`mlgamma`][mlgamma].
#' @return `mlgamma` returns an object of [class][base::class]
#' `univariateML`. This is a named numeric vector with maximum
#' likelihood estimates for `shape` and `rate` and the following
#' attributes:
#' \item{`model`}{The name of the model.}
#' \item{`density`}{The density associated with the estimates.}
#' \item{`logLik`}{The loglikelihood at the maximum.}
#' \item{`support`}{The support of the density.}
#' \item{`n`}{The number of observations.}
#' \item{`call`}{The call as captured my `match.call`}
#' @examples
#' mlgamma(precip)
#' @seealso [Nakagami][nakagami::Nakagami] for the Nakagami distribution.
#' [GammaDist][stats::GammaDist] for the closely related Gamma density.
#' See [`mlgamma`][mlgamma] for the machinery underlying this function.
#' @references Choi, S. C, and R. Wette. "Maximum likelihood estimation of the
#' parameters of the gamma distribution and their bias." Technometrics 11.4
#' (1969): 683-690.
#'
#' Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate
#' Distributions, Volume 1, Chapter 17. Wiley, New York.
#'
#' @export
mlnaka <- function(x, na.rm = FALSE, ...) {
if (na.rm) x <- x[!is.na(x)] else assertthat::assert_that(!anyNA(x))
ml_input_checker(x)
assertthat::assert_that(min(x) > 0)
n <- length(x)
object <- mlgamma(x^2, na.rm = na.rm, ...)
object["rate"] <- 1 / object["rate"] * object["shape"]
names(object) <- c("shape", "scale")
shape <- object["shape"]
scale <- object["scale"]
class(object) <- "univariateML"
attr(object, "model") <- "Nakagami"
attr(object, "density") <- "nakagami::dnaka"
attr(object, "logLik") <-
unname(n * (shape * log(shape) + log(2) -
lgamma(shape) - shape * log(scale)) +
(2 * shape - 1) * sum(log(x)) - shape / scale * sum(x^2))
attr(object, "support") <- c(0, Inf)
attr(object, "n") <- length(x)
attr(object, "call") <- match.call()
object
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.