Nothing
#' Nakagami distribution maximum likelihood estimation
#'
#' The maximum likelihood estimates of `shape` and `scale` are calculated by
#' calling `mlgamma` on the transformed data.
#'
#' For the density function of the Nakagami distribution see
#' [Nakagami][nakagami::Nakagami].
#'
#' @param x a (non-empty) numeric vector of data values.
#' @param na.rm logical. Should missing values be removed?
#' @param ... passed to [`mlgamma`][mlgamma].
#' @return `mlgamma` returns an object of [class][base::class]
#' `univariateML`. This is a named numeric vector with maximum
#' likelihood estimates for `shape` and `rate` and the following
#' attributes:
#' \item{`model`}{The name of the model.}
#' \item{`density`}{The density associated with the estimates.}
#' \item{`logLik`}{The loglikelihood at the maximum.}
#' \item{`support`}{The support of the density.}
#' \item{`n`}{The number of observations.}
#' \item{`call`}{The call as captured by `match.call`}
#' \item{`continuous`}{Is the density continuous or discrete?}
#' @examples
#' mlgamma(precip)
#' @seealso [Nakagami][nakagami::Nakagami] for the Nakagami distribution.
#' [GammaDist][stats::GammaDist] for the closely related Gamma density.
#' See [`mlgamma`][mlgamma] for the machinery underlying this function.
#' @references Choi, S. C, and R. Wette. "Maximum likelihood estimation of the
#' parameters of the gamma distribution and their bias." Technometrics 11.4
#' (1969): 683-690.
#'
#' Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate
#' Distributions, Volume 1, Chapter 17. Wiley, New York.
#'
#' @export
mlnaka <- function(x, na.rm = TRUE, ...) {}
univariateML_metadata$mlnaka <- list(
"model" = "Nakagami",
"density" = "nakagami::dnaka",
"support" = intervals::Intervals(c(0, Inf), closed = c(FALSE, FALSE)),
"names" = c("shape", "scale"),
"default" = c(2, 3)
)
mlnaka_ <- function(x, ...) {
estimates <- mlgamma_(x^2, ...)$estimates
estimates["rate"] <- 1 / estimates["rate"] * estimates["shape"]
n <- length(x)
shape <- estimates[1]
scale <- estimates[2]
logLik <-
unname(n * (shape * log(shape) + log(2) -
lgamma(shape) - shape * log(scale)) +
(2 * shape - 1) * sum(log(x)) - shape / scale * sum(x^2))
list(estimates = estimates, logLik = logLik)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.