Nothing
#' Paralogistic distribution maximum likelihood estimation
#'
#' This function estimates the only the shape parameters of the Paralogistic distribution.
#' The rate is set to 1.
#'
#' For the density function of the Paralogistic distribution see [Paralogistic][actuar::dparalogis].
#'
#' @param x a (non-empty) numeric vector of data values.
#' @param na.rm logical. Should missing values be removed?
#' @param ... currently affects nothing.
#' @return `mlparalogis` returns an object of [class][base::class] `univariateML`.
#' This is a named numeric vector with maximum likelihood estimates for
#' `shape` and the following attributes:
#' \item{`model`}{The name of the model.}
#' \item{`density`}{The density associated with the estimates.}
#' \item{`logLik`}{The loglikelihood at the maximum.}
#' \item{`support`}{The support of the density.}
#' \item{`n`}{The number of observations.}
#' \item{`call`}{The call as captured my `match.call`}
#' @examples
#' mlparalogis(abalone$length)
#' @seealso [Paralogistic][actuar::dparalogis] for the paralogistic density.
#' @references Kleiber, C. and Kotz, S. (2003), Statistical Size Distributions in Economics and Actuarial Sciences, Wiley.
#' Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), Loss Models, From Data to Decisions, Fourth Edition, Wiley.
#' @export
mlparalogis <- function(x, na.rm = FALSE, ...) {}
univariateML_metadata$mlparalogis <- list(
"model" = "Paralogistic",
"density" = "actuar::dparalogis",
"support" = intervals::Intervals(c(0, Inf), closed = c(FALSE, FALSE)),
"names" = c("shape"),
"default" = c(1)
)
mlparalogis_ <- function(x, ...) {
n <- length(x)
log_x <- log(x)
log_x2 <- log_x^2
s <- sum(log_x) / n
n <- length(x)
f_over_df <- function(shape) {
x_shape <- x^shape
x_div <- x_shape / (1 + x_shape)
r <- sum(log(1 + x_shape)) / n
r_grad <- sum(x_div * log_x) / n
r_hessian <- sum(x_div * log_x2) / n - sum(x_div * x_div * log_x2) / n
f <- 2 / shape + s - r - (shape + 1) * r_grad
df <- -2 / shape^2 - 2 * r_grad - (shape + 1) * r_hessian
f / df
}
# Approximate method of moments solution
shape0 <- max(3 / (1 - mean(x)), 0.1)
dots <- list(...)
if (!is.null(dots$shape0)) shape0 <- dots$shape0
shape <- newton_raphson_1d(f_over_df, shape0)
rn <- function(shape) sum(log(1 + x^shape))
loglik <- 2 * n * log(shape) + (shape - 1) * n * s - (shape + 1) * rn(shape)
list(estimates = c(shape), logLik = loglik)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.