Nothing
#' Poisson distribution maximum likelihood estimation
#'
#' The maximum likelihood estimate of `lambda` is the empirical mean.
#'
#' For the density function of the Poisson distribution see
#' [Poisson][stats::Poisson].
#'
#' @param x a (non-empty) numeric vector of data values.
#' @param na.rm logical. Should missing values be removed?
#' @param ... currently affects nothing.
#' @return `mlpois` returns an object of [class][base::class] `univariateML`.
#' This is a named numeric vector with maximum likelihood estimates for
#' `lambda` and the following attributes:
#' \item{`model`}{The name of the model.}
#' \item{`density`}{The density associated with the estimates.}
#' \item{`logLik`}{The loglikelihood at the maximum.}
#' \item{`support`}{The support of the density.}
#' \item{`n`}{The number of observations.}
#' \item{`call`}{The call as captured my `match.call`}
#' @examples
#' mlpois(ChickWeight$weight)
#' @seealso [Poisson][stats::Poisson] for the Poisson density.
#' @references
#' Johnson, N. L., Kemp, A. W., & Kotz, S. (2005). Univariate Discrete Distributions (3rd ed.). Wiley-Blackwell.
#' @export
mlpois <- function(x, na.rm = FALSE, ...) {}
univariateML_metadata$mlpois <- list(
"model" = "Poisson",
"density" = "stats::dpois",
"support" = intervals::Intervals(c(0, Inf), closed = c(TRUE, FALSE), type = "Z"),
"names" = c("lambda"),
"default" = 2
)
mlpois_ <- function(x, ...) {
n <- length(x)
lambda <- mean(x)
logLik <- -n * lambda + sum(x) * log(lambda) - sum(lgamma(x + 1))
list(estimates = lambda, logLik = logLik)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.