blrtest: Likelihood ratio test for restrictions on beta

View source: R/blrtest.R

blrtestR Documentation

Likelihood ratio test for restrictions on beta

Description

This function estimates a restricted VAR, where the restrictions are base upon \bold{\beta}, i.e. the cointegration vectors. The test statistic is distributed as \chi^2 with r(p-s) degrees of freedom, with s equal to the columns of the restricting matrix \bold{H}.

Usage

blrtest(z, H, r)

Arguments

z

An object of class ca.jo.

H

The (p \times s) matrix containing the restrictions on \bold{\beta}.

r

The count of cointegrating relationships;
inferred from summary(ca.jo-object).

Details

Please note, that in the case of nested hypothesis, the reported p-value should be adjusted to r(s1-s2) (see Johansen, S. and K. Juselius (1990)).

Value

An object of class cajo.test.

Author(s)

Bernhard Pfaff

References

Johansen, S. (1988), Statistical Analysis of Cointegration Vectors, Journal of Economic Dynamics and Control, 12, 231–254.

Johansen, S. and Juselius, K. (1990), Maximum Likelihood Estimation and Inference on Cointegration – with Applications to the Demand for Money, Oxford Bulletin of Economics and Statistics, 52, 2, 169–210.

Johansen, S. (1991), Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models, Econometrica, Vol. 59, No. 6, 1551–1580.

See Also

ca.jo, alrtest, ablrtest, bh5lrtest, bh6lrtest, cajo.test-class, ca.jo-class and urca-class.

Examples

data(denmark)
sjd <- denmark[, c("LRM", "LRY", "IBO", "IDE")]
sjd.vecm <- ca.jo(sjd, ecdet="const", type="eigen", K=2, spec="longrun",
season=4)
HD0 <- matrix(c(-1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1), c(5,4))
summary(blrtest(sjd.vecm, H=HD0, r=1))

urca documentation built on May 29, 2024, 5:36 a.m.

Related to blrtest in urca...