README.md

utiml: Utilities for Multi-label Learning

Travis-CI Build Status

The utiml package is a framework to support multi-label processing, like Mulan on Weka.

The main methods available on this package are organized in the groups: - Classification methods - Evaluation methods - Pre-process utilities - Sampling methods - Threshold methods

Instalation

The installation process is similar to other packages available on CRAN:

install.packages("utiml")

This will also install mldr. To run the examples in this document, you also need to install the packages:

# Base classifiers (SVM and Random Forest)
install.packages(c("e1071", "randomForest"))

Install via github (development version)

devtools::install_github("rivolli/utiml")

Multi-label Classification

Running Binary Relevance Method

library(utiml)

# Create two partitions (train and test) of toyml multi-label dataset
ds <- create_holdout_partition(toyml, c(train=0.65, test=0.35))

# Create a Binary Relevance Model using e1071::svm method
brmodel <- br(ds$train, "SVM", seed=123)

# Predict
prediction <- predict(brmodel, ds$test)

# Show the predictions
head(as.bipartition(prediction))
head(as.ranking(prediction))

# Apply a threshold
newpred <- rcut_threshold(prediction, 2)

# Evaluate the models
result <- multilabel_evaluate(ds$tes, prediction, "bipartition")
thresres <- multilabel_evaluate(ds$tes, newpred, "bipartition")

# Print the result
print(round(cbind(Default=result, RCUT=thresres), 3))

Running Ensemble of Classifier Chains

library(utiml)

# Create three partitions (train, val, test) of emotions dataset
partitions <- c(train = 0.6, val = 0.2, test = 0.2)
ds <- create_holdout_partition(emotions, partitions, method="iterative")

# Create an Ensemble of Classifier Chains using Random Forest (randomForest package)
eccmodel <- ecc(ds$train, "RF", m=3, cores=parallel::detectCores(), seed=123)

# Predict
val <- predict(eccmodel, ds$val, cores=parallel::detectCores())
test <- predict(eccmodel, ds$test, cores=parallel::detectCores())

# Apply a threshold
thresholds <- scut_threshold(val, ds$val, cores=parallel::detectCores())
new.val <- fixed_threshold(val, thresholds)
new.test <- fixed_threshold(test, thresholds)

# Evaluate the models
measures <- c("subset-accuracy", "F1", "hamming-loss", "macro-based") 

result <- cbind(
  Test = multilabel_evaluate(ds$tes, test, measures),
  TestWithThreshold = multilabel_evaluate(ds$tes, new.test, measures),
  Validation = multilabel_evaluate(ds$val, val, measures),
  ValidationWithThreshold = multilabel_evaluate(ds$val, new.val, measures)
)

print(round(result, 3))

More examples and details are available on functions documentations and vignettes, please refer to the documentation.



Try the utiml package in your browser

Any scripts or data that you put into this service are public.

utiml documentation built on Aug. 1, 2017, 1:01 a.m.