Description Usage Arguments Details Value References See Also Examples
Create a Binary Relevance model for multilabel classification.
1 2 3 4 5 6 7 |
mdata |
A mldr dataset used to train the binary models. |
base.algorithm |
A string with the name of the base algorithm (Default:
|
... |
Others arguments passed to the base algorithm for all subproblems |
cores |
The number of cores to parallelize the training. (Default:
|
seed |
An optional integer used to set the seed. This is useful when
the method is run in parallel. (Default: |
Binary Relevance is a simple and effective transformation method to predict multi-label data. This is based on the one-versus-all approach to build a specific model for each label.
An object of class BRmodel
containing the set of fitted
models, including:
A vector with the label names.
A list of the generated models, named by the label names.
Boutell, M. R., Luo, J., Shen, X., & Brown, C. M. (2004). Learning multi-label scene classification. Pattern Recognition, 37(9), 1757-1771.
Other Transformation methods:
brplus()
,
cc()
,
clr()
,
dbr()
,
ebr()
,
ecc()
,
eps()
,
esl()
,
homer()
,
lift()
,
lp()
,
mbr()
,
ns()
,
ppt()
,
prudent()
,
ps()
,
rakel()
,
rdbr()
,
rpc()
1 2 3 4 5 6 7 8 9 10 11 12 13 | model <- br(toyml, "RANDOM")
pred <- predict(model, toyml)
# Use SVM as base algorithm
model <- br(toyml, "SVM")
pred <- predict(model, toyml)
# Change the base algorithm and use 2 CORES
model <- br(toyml[1:50], 'RF', cores = 2, seed = 123)
# Set a parameters for all subproblems
model <- br(toyml, 'KNN', k=5)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.