Description Usage Arguments Details Value References See Also Examples
Create a Label Powerset model for multilabel classification.
1 2 3 4 5 6 7 |
mdata |
A mldr dataset used to train the binary models. |
base.algorithm |
A string with the name of the base algorithm. (Default:
|
... |
Others arguments passed to the base algorithm for all subproblems |
cores |
Not used |
seed |
An optional integer used to set the seed. (Default:
|
Label Powerset is a simple transformation method to predict multi-label data. This is based on the multi-class approach to build a model where the classes are each labelset.
An object of class LPmodel
containing the set of fitted
models, including:
A vector with the label names.
A multi-class model.
Boutell, M. R., Luo, J., Shen, X., & Brown, C. M. (2004). Learning multi-label scene classification. Pattern Recognition, 37(9), 1757-1771.
Other Transformation methods:
brplus()
,
br()
,
cc()
,
clr()
,
dbr()
,
ebr()
,
ecc()
,
eps()
,
esl()
,
homer()
,
lift()
,
mbr()
,
ns()
,
ppt()
,
prudent()
,
ps()
,
rakel()
,
rdbr()
,
rpc()
Other Powerset:
eps()
,
ppt()
,
ps()
,
rakel()
1 2 |
Loading required package: mldr
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.