Proportional Thresholding (PCut)

Share:

Description

Define the proportion of examples for each label will be positive. The Proportion Cut (PCut) method can be a label-wise or global method that calibrates the threshold(s) from the training data globally or per label.

Usage

1
2
3
4
5
6
7
pcut_threshold(prediction, ratio, probability = FALSE)

## Default S3 method:
pcut_threshold(prediction, ratio, probability = FALSE)

## S3 method for class 'mlresult'
pcut_threshold(prediction, ratio, probability = FALSE)

Arguments

prediction

A matrix or mlresult.

ratio

A single value between 0 and 1 or a list with ratio values contained one value per label.

probability

A logical value. If TRUE the predicted values are the score between 0 and 1, otherwise the values are bipartition 0 or 1. (Default: FALSE)

Value

A mlresult object.

Methods (by class)

  • default: Proportional Thresholding (PCut) method for matrix

  • mlresult: Proportional Thresholding (PCut) for mlresult

References

Al-Otaibi, R., Flach, P., & Kull, M. (2014). Multi-label Classification: A Comparative Study on Threshold Selection Methods. In First International Workshop on Learning over Multiple Contexts (LMCE) at ECML-PKDD 2014.

Largeron, C., Moulin, C., & Gery, M. (2012). MCut: A Thresholding Strategy for Multi-label Classification. In 11th International Symposium, IDA 2012 (pp. 172-183).

See Also

Other threshold: fixed_threshold, lcard_threshold, mcut_threshold, rcut_threshold, scut_threshold, subset_correction

Examples

1
2
prediction <- matrix(runif(16), ncol = 4)
pcut_threshold(prediction, .45)

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.