Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
fig.width = 6,
fig.heigth = 2,
collapse = TRUE,
comment = "#>"
)
## -----------------------------------------------------------------------------
library(vctsfr)
plot_ts(USAccDeaths) # plotting a time series
## -----------------------------------------------------------------------------
plot_ts(USAccDeaths, sdp = FALSE)
## -----------------------------------------------------------------------------
library(forecast)
ets_fit <- ets(USAccDeaths)
ets_f <- forecast(ets_fit, h = 12)
plot_ts(USAccDeaths, prediction = ets_f$mean, method = "ets")
## -----------------------------------------------------------------------------
library(forecast)
ets_fit <- ets(USAccDeaths)
ets_f <- forecast(ets_fit, h = 12, level = 90)
plot_ts(USAccDeaths,
prediction = ets_f$mean,
method = "ets",
lpi = ets_f$lower,
upi = ets_f$upper,
level = 90
)
## -----------------------------------------------------------------------------
timeS <- window(USAccDeaths, end = c(1977, 12))
fut <- window(USAccDeaths, start = c(1978, 1))
ets_fit <- ets(timeS)
ets_f <- forecast(ets_fit, h = length(fut), level = 80)
plot_ts(timeS,
future = fut,
prediction = ets_f$mean,
method = "ets",
lpi = ets_f$lower,
upi = ets_f$upper,
level = 80
)
## -----------------------------------------------------------------------------
timeS <- window(USAccDeaths, end = c(1977, 12)) # historical values
fut <- window(USAccDeaths, start = c(1978, 1)) # "future" values
ets_fit <- ets(timeS) # exponential smoothing fit
ets_f <- forecast(ets_fit, h = length(fut)) # exponential smoothing forecast
arima_fit <- auto.arima(timeS) # ARIMA fit
arima_f <- forecast(arima_fit, h = length(fut)) # ARIMA forecast
plot_predictions(timeS, future = fut,
predictions = list(ets = ets_f$mean, arima = arima_f$mean)
)
## -----------------------------------------------------------------------------
collection1 <- list(ts_info(USAccDeaths), ts_info(UKDriverDeaths))
## -----------------------------------------------------------------------------
library(Mcomp)
# select the industry, quarterly series from M1 competition (18 series)
M1_quarterly <- subset(M1, 4, "industry")
# build the collection
collection2 <- vector("list", length = length(M1_quarterly))
for (ind in seq_along(M1_quarterly)) {
timeS <- M1_quarterly[[ind]]$x # time series
name <- M1_quarterly[[ind]]$st # time series's name
fut <- M1_quarterly[[ind]]$xx # future values
ets_fit <- ets(timeS) # ES fit
ets_for <- forecast(ets_fit, h = length(fut)) # ES forecast
collection2[[ind]] <- ts_info(timeS,
prediction_info("ets", ets_for$mean),
future = fut,
name = name
)
}
## -----------------------------------------------------------------------------
collection3 <- vector("list", length = length(M1_quarterly))
for (ind in seq_along(M1_quarterly)) {
t <- M1_quarterly[[ind]]$x # time series
name <- M1_quarterly[[ind]]$st # time series's name
f <- M1_quarterly[[ind]]$xx # "future" values
ets_fit <- ets(t) # ES fit
ets_f <- forecast(ets_fit, h = length(f), level = 90) # ES forecast
arima_fit <- auto.arima(t) # ARIMA fit
arima_f <- forecast(arima_fit, h = length(f), # ARIMA forecast
level = c(80, 90)
)
collection3[[ind]] <- ts_info(t,
future = f,
prediction_info("ets",
ets_f$mean,
pi_info(90,
ets_f$lower,
ets_f$upper)
),
prediction_info("arima",
arima_f$mean,
pi_info(80,
arima_f$lower[, 1],
arima_f$upper[, 1]
),
pi_info(90,
arima_f$lower[, 2],
arima_f$upper[, 2]
)
),
name = name)
}
## -----------------------------------------------------------------------------
plot_collection(collection3, number = 3)
## -----------------------------------------------------------------------------
plot_collection(collection3, number = 3, methods = "ets")
## -----------------------------------------------------------------------------
plot_collection(collection3, number = 3, methods = "arima", level = 90)
## ----eval=FALSE---------------------------------------------------------------
# GUI_collection(collection3)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.