Nothing
## -----------------------------------------------------------------------------
library("MASS")
data("nlschools")
summary(nlschools)
## ----message = FALSE, warning = FALSE-----------------------------------------
library("R2BayesX")
m1 <- bayesx(lang ~ IQ + GS + SES + COMB, data = nlschools)
summary(m1)
## ----fig = TRUE, fig.width = 15, fig.height = 5-------------------------------
boxplot(lang ~ class, data = nlschools, las = 2)
## -----------------------------------------------------------------------------
m2 <- bayesx(
lang ~ IQ + GS + SES + COMB + sx(class, bs = "re"),
data = nlschools
)
summary(m2)
## -----------------------------------------------------------------------------
library(lme4)
m2lmer <- lmer(
lang ~ IQ + GS + SES + COMB + (1 | class), # Fit a separate intercept for each level of class
data = nlschools
)
summary(m2lmer)
## ----message = FALSE, warning = FALSE-----------------------------------------
library(spData)
data(nc.sids)
summary(nc.sids)
## -----------------------------------------------------------------------------
# Overall mortality rate
r74 <- sum(nc.sids$SID74) / sum(nc.sids$BIR74)
# Expected cases
nc.sids$EXP74 <- r74 * nc.sids$BIR74
## -----------------------------------------------------------------------------
nc.sids$SMR74 <- nc.sids$SID74 / nc.sids$EXP74
## ----fig = TRUE---------------------------------------------------------------
hist(nc.sids$SMR, xlab = "SMR")
## -----------------------------------------------------------------------------
nc.sids$NWPROP74 <- nc.sids$NWBIR74/ nc.sids$BIR74
## ----fig = TRUE---------------------------------------------------------------
plot(nc.sids$NWPROP74, nc.sids$SMR74)
# Correlation
cor(nc.sids$NWPROP74, nc.sids$SMR74)
## -----------------------------------------------------------------------------
m1nc <- bayesx(
SID74 ~ 1 + NWPROP74,
family = "poisson",
offset = log(nc.sids$EXP74),
data = nc.sids
)
summary(m1nc)
## -----------------------------------------------------------------------------
# Index for random effects
nc.sids$ID <- seq_len(nrow(nc.sids))
# Model WITH covariate
m2nc <- bayesx(
SID74 ~ 1 + NWPROP74 + sx(ID, bs = "re"),
family = "poisson",
offset = log(nc.sids$EXP74),
data = as.data.frame(nc.sids)
)
summary(m2nc)
## ----fig = TRUE---------------------------------------------------------------
x.predict <- seq(0,1,length=1000)
y.predict <- exp(coef(m2nc)["(Intercept)","Mean"]+coef(m2nc)["NWPROP74","Mean"]*x.predict)
oldpar <- par(mfrow = c(1, 1))
plot(nc.sids$NWPROP74, nc.sids$SMR74)
lines(x.predict,y.predict)
par(oldpar)
## -----------------------------------------------------------------------------
# Model WITHOUT covariate
m3nc <- bayesx(
SID74 ~ 1 + sx(ID, bs = "re"),
family = "poisson",
offset = log(nc.sids$EXP74),
data = as.data.frame(nc.sids)
)
summary(m3nc)
## ----fig = TRUE---------------------------------------------------------------
oldpar <- par(mfrow = c(1, 2))
boxplot(m2nc$effects$`sx(ID):re`$Mean, ylim = c(-1, 1), main = "With NWPROP74")
boxplot(m3nc$effects$`sx(ID):re`$Mean, ylim = c(-1, 1), main = "Without NWPROP74")
par(oldpar)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.