Nothing
#' Estimate area under the receiver operating characteristic curve (AUC)
#'
#' Compute nonparametric estimate of AUC.
#'
#' @inheritParams measure_accuracy
#'
#' @return A named list of: (1) the estimated AUC of the fitted regression
#' function; (2) the estimated influence function; and
#' (3) the IPC EIF predictions.
#' @importFrom SuperLearner predict.SuperLearner SuperLearner
#' @importFrom data.table data.table `:=`
#' @export
measure_auc <- function(fitted_values, y, full_y = NULL,
C = rep(1, length(y)), Z = NULL,
ipc_weights = rep(1, length(y)),
ipc_fit_type = "external",
ipc_eif_preds = rep(1, length(y)),
ipc_est_type = "aipw", scale = "logit",
na.rm = FALSE, nuisance_estimators = NULL,
a = NULL, ...) {
# bind "global vars" to pass R CMD check
initial_rownums <- label <- pred <- sens <- spec <- NULL
# compute the point estimate (on only data with all obs, if IPC
# weights are entered)
preds <- ROCR::prediction(predictions = fitted_values, labels = y)
est <- unlist(ROCR::performance(prediction.obj = preds, measure = "auc",
x.measure = "cutoff")@y.values)
# compute sensitivity and specificity
n_0 <- sum(y == 0)
n_1 <- sum(y == 1)
n_0_weighted <- sum((y == 0) * ipc_weights[C == 1])
n_1_weighted <- sum((y == 1) * ipc_weights[C == 1])
if (is.null(full_y)) {
p_0 <- mean(y == 0)
p_1 <- mean(y == 1)
} else {
p_0 <- mean(full_y == 0)
p_1 <- mean(full_y == 1)
}
dt <- data.table::data.table(pred = as.numeric(fitted_values), label = as.numeric(y),
initial_rownums = 1:length(as.numeric(y)))
# sort by ascending pred within descending label, i.e., all Y = 1 followed by all Y = 0
dt <- dt[order(pred, -xtfrm(label))]
dt[, sens := cumsum(label == 0) / n_0]
# sort by descending pred within ascending label
dt <- dt[order(-pred, label)]
dt[, spec := cumsum(label == 1) / n_1]
dt <- dt[order(initial_rownums)]
# compute the EIF: if there is coarsening, do a correction
if (!all(ipc_weights == 1)) {
# gradient
obs_grad <- ((y == 0) / p_0) * (dt$spec - est) +
((y == 1) / p_1) * (dt$sens - est)
# if IPC EIF preds aren't entered, estimate the regression
ipc_eif_preds <- estimate_eif_projection(obs_grad = obs_grad, C = C,
Z = Z, ipc_fit_type = ipc_fit_type,
ipc_eif_preds = ipc_eif_preds, ...)
weighted_obs_grad <- rep(0, length(C))
weighted_obs_grad[C == 1] <- obs_grad * ipc_weights[C == 1]
grad <- weighted_obs_grad - (C * ipc_weights - 1) * ipc_eif_preds
# compute weighted AUC
pred_order <- order(as.numeric(fitted_values), decreasing = TRUE)
ordered_preds <- as.numeric(fitted_values)[pred_order]
tp <- cumsum(ipc_weights[C == 1][pred_order] * (y[pred_order] == 1))
fp <- cumsum(ipc_weights[C == 1][pred_order] * (y[pred_order] == 0))
dups <- rev(duplicated(rev(ordered_preds)))
fp <- c(0, fp[!dups])
tp <- c(0, tp[!dups])
fp_x <- fp / n_0_weighted
tp_y <- tp / n_1_weighted
obs_est <- 0
for (i in 2:length(fp_x)) {
obs_est <- obs_est + 0.5 * (fp_x[i] - fp_x[i - 1]) * (tp_y[i] + tp_y[i - 1])
}
obs_est <- as.numeric(obs_est)
if (ipc_est_type == "ipw") {
est <- scale_est(obs_est, rep(0, length(grad)), scale = scale)
} else {
est <- scale_est(obs_est, grad, scale = scale)
}
} else {
# gradient
grad <- ((y == 0) / p_0) * (dt$spec - est) +
((y == 1) / p_1) * (dt$sens - est)
}
return(list(point_est = est, eif = grad, ipc_eif_preds = ipc_eif_preds))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.