Nothing
#' Estimate the deviance
#'
#' Compute nonparametric estimate of deviance.
#'
#' @inheritParams measure_accuracy
#'
#' @return A named list of: (1) the estimated deviance of the fitted regression
#' function; (2) the estimated influence function; and
#' (3) the IPC EIF predictions.
#' @importFrom SuperLearner predict.SuperLearner SuperLearner
#' @export
measure_deviance <- function(fitted_values, y, full_y = NULL,
C = rep(1, length(y)), Z = NULL,
ipc_weights = rep(1, length(y)),
ipc_fit_type = "external",
ipc_eif_preds = rep(1, length(y)),
ipc_est_type = "aipw", scale = "logit",
na.rm = FALSE, nuisance_estimators = NULL,
a = NULL, ...) {
# point estimates of all components
if (is.null(dim(y))) { # assume that zero is in first column
y_mult <- cbind(1 - y, y)
} else if (dim(y)[2] == 1) {
y_mult <- cbind(1 - y, y)
} else {
y_mult <- y
}
# estimate the probability of observing a "case"
if (is.null(full_y)) {
pi_0 <- mean(y, na.rm = na.rm)
} else {
pi_0 <- mean(full_y, na.rm = na.rm)
}
# compute the EIF: if there is coarsening, do a correction
if (!all(ipc_weights == 1)) {
# get full-data gradient on fully-observed data
obs_ce <- measure_cross_entropy(fitted_values, y, na.rm = na.rm)
obs_denom <- measure_cross_entropy(
fitted_values = rep(pi_0, length(y)), y, na.rm = na.rm
)
obs_grad <- as.vector(
matrix(c(1 / obs_denom$point_est,
obs_ce$point_est / (obs_denom$point_est ^ 2)),
nrow = 1) %*% t(cbind(obs_ce$eif, obs_denom$eif))
)
# if IPC EIF preds aren't entered, estimate the regression
ipc_eif_preds <- estimate_eif_projection(obs_grad = obs_grad, C = C,
Z = Z, ipc_fit_type = ipc_fit_type,
ipc_eif_preds = ipc_eif_preds, ...)
weighted_obs_grad <- rep(0, length(C))
weighted_obs_grad[C == 1] <- obs_grad * ipc_weights[C == 1]
grad <- weighted_obs_grad - (C * ipc_weights - 1) * ipc_eif_preds
obs_est <- 1 - measure_cross_entropy(
fitted_values, 1 * ipc_weights[C == 1] * y, na.rm = na.rm
)$point_est / measure_cross_entropy(
fitted_values = mean(1 * ipc_weights[C == 1] * y, na.rm = na.rm),
1 * ipc_weights[C == 1] * y, na.rm = na.rm
)
if (ipc_est_type == "ipw") {
est <- scale_est(obs_est, rep(0, length(grad)), scale = scale)
} else {
est <- scale_est(obs_est, grad, scale = scale)
}
} else {
cross_entropy_meas <- measure_cross_entropy(
fitted_values, y, na.rm = na.rm
)
denom <- measure_cross_entropy(
fitted_values = rep(pi_0, length(y)), y, na.rm = na.rm
)
est <- 1 - cross_entropy_meas$point_est / denom$point_est
grad <- as.vector(
matrix(
c(1/denom$point_est,
-cross_entropy_meas$point_est/(denom$point_est^2)), nrow = 1
) %*% t(cbind(cross_entropy_meas$eif, denom$eif))
)
}
return(list(point_est = est, eif = grad, ipc_eif_preds = ipc_eif_preds))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.