Nothing
#' Create a scatter plot visualisation from a `<summarised_result>` object
#'
#' `r lifecycle::badge("experimental")`
#'
#' @param result A `<summarised_result>` object.
#' @param x Column or estimate name that is used as x variable.
#' @param y Column or estimate name that is used as y variable
#' @param line Whether to plot a line using `geom_line`.
#' @param point Whether to plot points using `geom_point`.
#' @param ribbon Whether to plot a ribbon using `geom_ribbon`.
#' @param ymin Lower limit of error bars, if provided is plot using
#' `geom_errorbar`.
#' @param ymax Upper limit of error bars, if provided is plot using
#' `geom_errorbar`.
#' @param facet Variables to facet by, a formula can be provided to specify
#' which variables should be used as rows and which ones as columns.
#' @param colour Columns to use to determine the colors.
#' @param group Columns to use to determine the group.
#'
#' @return A plot object.
#'
#' @export
#'
#' @examples
#' \donttest{
#' result <- mockSummarisedResult() |>
#' dplyr::filter(variable_name == "age")
#'
#' scatterPlot(
#' result = result,
#' x = "cohort_name",
#' y = "mean",
#' line = TRUE,
#' point = TRUE,
#' ribbon = FALSE,
#' facet = age_group ~ sex)
#' }
#'
scatterPlot <- function(result,
x,
y,
line,
point,
ribbon,
ymin = NULL,
ymax = NULL,
facet = NULL,
colour = NULL,
group = colour) {
rlang::check_installed("ggplot2")
# check and prepare input
omopgenerics::assertTable(result)
omopgenerics::assertLogical(line, length = 1, call = call)
omopgenerics::assertLogical(point, length = 1, call = call)
omopgenerics::assertLogical(ribbon, length = 1, call = call)
omopgenerics::assertCharacter(x)
omopgenerics::assertCharacter(y, length = 1)
omopgenerics::assertCharacter(ymin, length = 1, null = TRUE)
omopgenerics::assertCharacter(ymax, length = 1, null = TRUE)
validateFacet(facet)
omopgenerics::assertCharacter(colour, null = TRUE)
omopgenerics::assertCharacter(group, null = TRUE)
# empty
if (nrow(result) == 0) {
cli::cli_warn(c("!" = "result object is empty, returning empty plot."))
return(ggplot2::ggplot())
}
est <- c(x, y, ymin, ymax, asCharacterFacet(facet), colour, group)
# check that all data is present
checkInData(result, est)
# get estimates
result <- cleanEstimates(result, est)
# tidy result
result <- tidyResult(result)
# warn multiple values
result |>
warnMultipleValues(cols = list(
x = x, facet = asCharacterFacet(facet), colour = colour, group = group))
# prepare result
cols = list(
x = x, y = y, ymin = ymin, ymax = ymax, colour = colour, group = group,
fill = colour)
result <- prepareColumns(result = result, cols = cols, facet = facet)
# get aes
aes <- getAes(cols)
yminymax <- !is.null(ymin) & !is.null(ymax)
# make plot
p <- ggplot2::ggplot(data = result, mapping = aes)
if (line) p <- p + ggplot2::geom_line()
if (yminymax) p <- p + ggplot2::geom_errorbar()
if (point) p <- p + ggplot2::geom_point()
if (ribbon & yminymax) {
p <- p +
ggplot2::geom_ribbon(alpha = .3, color = NA, show.legend = FALSE)
}
p <- plotFacet(p, facet) +
ggplot2::labs(
x = styleLabel(x),
fill = styleLabel(colour),
colour = styleLabel(colour),
y = styleLabel(y)
) +
ggplot2::theme(
legend.position = hideLegend(colour)
)
return(p)
}
#' Create a box plot visualisation from a `<summarised_result>` object
#'
#' `r lifecycle::badge("experimental")`
#'
#' @param result A `<summarised_result>` object.
#' @param x Columns to use as x axes.
#' @param lower Estimate name for the lower quantile of the box.
#' @param middle Estimate name for the middle line of the box.
#' @param upper Estimate name for the upper quantile of the box.
#' @param ymin Estimate name for the lower limit of the bars.
#' @param ymax Estimate name for the upper limit of the bars.
#' @param facet Variables to facet by, a formula can be provided to specify
#' which variables should be used as rows and which ones as columns.
#' @param colour Columns to use to determine the colors.
#'
#' @return A ggplot2 object.
#' @export
#'
boxPlot <- function(result,
x = NULL,
lower = "q25",
middle = "median",
upper = "q75",
ymin = "min",
ymax = "max",
facet = NULL,
colour = NULL) {
rlang::check_installed("ggplot2")
# initial checks
omopgenerics::assertTable(result)
omopgenerics::assertCharacter(x, null = TRUE)
omopgenerics::assertCharacter(lower, length = 1)
omopgenerics::assertCharacter(middle, length = 1)
omopgenerics::assertCharacter(upper, length = 1)
omopgenerics::assertCharacter(ymin, length = 1)
omopgenerics::assertCharacter(ymax, length = 1)
validateFacet(facet)
omopgenerics::assertCharacter(colour, null = TRUE)
# empty
if (nrow(result) == 0) {
cli::cli_warn(c("!" = "result object is empty, returning empty plot."))
return(ggplot2::ggplot())
}
est <- c(x, lower, middle, upper, ymin, ymax, asCharacterFacet(facet), colour)
# check that all data is present
checkInData(result, est)
# subset to estimates of use
result <- cleanEstimates(result, est)
ylab <- styleLabel(unique(suppressWarnings(result$variable_name)))
# tidy result
result <- tidyResult(result)
# warn multiple values
result |>
warnMultipleValues(cols = list(
x = x, facet = asCharacterFacet(facet), colour = colour))
# prepare result
col <- omopgenerics::uniqueId(exclude = colnames(result))
result <- result |>
dplyr::mutate(!!col := dplyr::row_number())
cols = list(
x = x, lower = lower, middle = middle, upper = upper, ymin = ymin,
ymax = ymax, colour = colour, group = col)
result <- prepareColumns(result = result, cols = cols, facet = facet)
# get aes
aes <- getAes(cols)
yminymax <- !is.null(ymin) & !is.null(ymax)
clab <- styleLabel(colour)
xlab <- styleLabel(x)
p <- ggplot2::ggplot(data = result, mapping = aes) +
ggplot2::geom_boxplot(stat = "identity")
p <- plotFacet(p, facet) +
ggplot2::labs(y = ylab, colour = clab, x = xlab) +
ggplot2::theme(
legend.position = hideLegend(colour)
)
return(p)
}
#' Create a bar plot visualisation from a `<summarised_result>` object
#'
#' `r lifecycle::badge("experimental")`
#'
#' @param result A `<summarised_result>` object.
#' @param x Column or estimate name that is used as x variable.
#' @param y Column or estimate name that is used as y variable
#' @param facet Variables to facet by, a formula can be provided to specify
#' which variables should be used as rows and which ones as columns.
#' @param colour Columns to use to determine the colors.
#'
#' @return A plot object.
#' @export
#'
#' @examples
#' \donttest{
#' result <- mockSummarisedResult() |> dplyr::filter(variable_name == "age")
#'
#' barPlot(
#' result = result,
#' x = "cohort_name",
#' y = "mean",
#' facet = c("age_group", "sex"),
#' colour = "sex")
#' }
#'
barPlot <- function(result,
x,
y,
facet = NULL,
colour = NULL) {
rlang::check_installed("ggplot2")
# initial checks
omopgenerics::assertTable(result)
omopgenerics::assertCharacter(x)
omopgenerics::assertCharacter(y, length = 1)
validateFacet(facet)
omopgenerics::assertCharacter(colour, null = TRUE)
# empty
if (nrow(result) == 0) {
cli::cli_warn(c("!" = "result object is empty, returning empty plot."))
return(ggplot2::ggplot())
}
est <- c(x, y, asCharacterFacet(facet), colour)
# check that all data is present
checkInData(result, est)
# subset to estimates of use
result <- cleanEstimates(result, est)
# tidy result
result <- tidyResult(result)
# warn multiple values
result |>
warnMultipleValues(cols = list(
x = x, facet = asCharacterFacet(facet), colour = colour))
# prepare result
cols = list(x = x, y = y, colour = colour, fill = colour)
result <- prepareColumns(result = result, cols = cols, facet = facet)
# get aes
aes <- getAes(cols)
# create plot
p <- ggplot2::ggplot(data = result, mapping = aes) +
ggplot2::geom_col()
p <- plotFacet(p, facet) +
ggplot2::labs(
x = styleLabel(x),
fill = styleLabel(colour),
colour = styleLabel(colour),
y = styleLabel(y)
) +
ggplot2::theme(
legend.position = hideLegend(colour)
)
return(p)
}
tidyResult <- function(result) {
if (inherits(result, "summarised_result")) {
result <- tidy(result) |>
dplyr::select(!dplyr::any_of("result_id"))
}
return(result)
}
prepareColumns <- function(result,
cols,
facet,
call = parent.frame()) {
opts <- colnames(result)
# prepare columns
varNames <- names(cols)
newNames <- omopgenerics::uniqueId(n = length(cols), exclude = opts)
for (k in seq_along(cols)) {
result <- prepareColumn(
result = result, newName = newNames[k], cols = cols[[k]],
varName = varNames[k], opts = opts, call = call
)
}
# variables to keep
toSelect <- c(rlang::set_names(newNames, varNames), asCharacterFacet(facet))
# select variables of interest
result <- result |>
dplyr::select(dplyr::all_of(toSelect))
return(result)
}
prepareColumn <- function(result,
newName,
cols,
varName,
opts,
call) {
if (length(cols) == 0) {
return(
result |>
dplyr::mutate(!!newName := "")
)
}
if (!is.character(cols) || !all(cols %in% opts)) {
c("x" = "{varName} ({.var {cols}}) is not a column in result.") |>
cli::cli_abort(call = call)
}
if (length(cols) == 1) {
result <- result |>
dplyr::mutate(!!newName := .data[[cols]])
} else {
result <- result |>
tidyr::unite(
col = !!newName, dplyr::all_of(cols), remove = FALSE, sep = " - ")
}
return(result)
}
getAes <- function(cols) {
if (is.null(cols$ymin)) cols$ymin <- NULL
if (is.null(cols$ymax)) cols$ymax <- NULL
vars <- names(cols)
paste0(
"ggplot2::aes(",
glue::glue("{vars} = .data${vars}") |>
stringr::str_c(collapse = ", "),
")"
) |>
rlang::parse_expr() |>
rlang::eval_tidy()
}
plotFacet <- function(p, facet) {
if (!is.null(facet)) {
if (is.character(facet)) {
p <- p + ggplot2::facet_wrap(facets = facet)
} else {
p <- p + ggplot2::facet_grid(facet)
}
}
return(p)
}
styleLabel <- function(x) {
#length(x) > 0 remove the character(0)
if (!is.null(x) && all(x != "") && length(x) > 0) {
x |>
stringr::str_replace_all(pattern = "_", replacement = " ") |>
stringr::str_to_sentence() |>
stringr::str_flatten(collapse = ", ", last = " and ")
} else {
NULL
}
}
hideLegend <- function(x) {
if (length(x) > 0 && !identical(x, "")) "right" else "none"
}
validateFacet <- function(x, call = parent.frame()) {
if (rlang::is_formula(x)) return(invisible(NULL))
omopgenerics::assertCharacter(x, null = TRUE)
return(invisible(NULL))
}
warnMultipleValues <- function(result, cols) {
nms <- names(cols)
cols <- unique(unlist(cols))
vars <- result |>
dplyr::group_by(dplyr::across(dplyr::all_of(cols))) |>
dplyr::group_split() |>
as.list()
vars <- vars[purrr::map_int(vars, nrow) > 1] |>
purrr::map(\(x) {
x <- purrr::map(x, unique)
names(x)[lengths(x) > 1]
}) |>
unlist() |>
unique()
if (length(vars) > 0) {
cli::cli_inform(c(
"!" = "Multiple values of {.var {vars}} detected, consider including them
in either: {.var {nms}}."
))
}
return(invisible(NULL))
}
asCharacterFacet <- function(facet) {
if (rlang::is_formula(facet)) {
facet <- as.character(facet)
facet <- facet[-1]
facet <- facet |>
stringr::str_split(pattern = stringr::fixed(" + ")) |>
unlist()
facet <- facet[facet != "."]
}
return(facet)
}
cleanEstimates <- function(result, est) {
if ("estimate_name" %in% colnames(result)) {
est <- unique(est)
result <- result |>
dplyr::filter(.data$estimate_name %in% .env$est)
}
return(result)
}
checkInData <- function(result, est, call = parent.frame()) {
cols <- colnames(result)
if (inherits(result, "summarised_result") &
all(omopgenerics::resultColumns("summarised_result") %in% cols)) {
cols <- tidyColumns(result)
}
est <- unique(est)
notPresent <- est[!est %in% cols]
if (length(notPresent) > 0) {
"{.var {notPresent}} {?is/are} not present in data." |>
cli::cli_abort(call = call)
}
return(invisible(NULL))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.