Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
warning = FALSE,
fig.width=7,
fig.height=5
)
options(rmarkdown.html_vignette.check_title = FALSE)
## ----setup--------------------------------------------------------------------
library(visOmopResults)
## -----------------------------------------------------------------------------
library(PatientProfiles)
library(palmerpenguins)
library(dplyr)
summariseIsland <- function(island) {
penguins |>
filter(.data$island == .env$island) |>
summariseResult(
group = "species",
includeOverallGroup = TRUE,
strata = list("year", "sex", c("year", "sex")),
variables = c(
"bill_length_mm", "bill_depth_mm", "flipper_length_mm", "body_mass_g",
"sex"),
estimates = c(
"median", "q25", "q75", "min", "max", "count_missing", "count",
"percentage", "density")
) |>
suppressMessages() |>
mutate(cdm_name = island)
}
penguinsSummary <- bind(
summariseIsland("Torgersen"),
summariseIsland("Biscoe"),
summariseIsland("Dream")
)
## -----------------------------------------------------------------------------
tidyColumns(penguinsSummary)
## -----------------------------------------------------------------------------
colnames(penguinsSummary)
## -----------------------------------------------------------------------------
penguinsSummary |>
filter(variable_name == "bill_depth_mm") |>
filterStrata(year != "overall", sex == "overall") |>
scatterPlot(
x = "year",
y = "median",
line = TRUE,
point = TRUE,
ribbon = FALSE,
facet = "cdm_name",
colour = "species"
)
## -----------------------------------------------------------------------------
penguinsSummary |>
filter(variable_name %in% c("bill_length_mm", "bill_depth_mm"))|>
filterStrata(year == "overall", sex == "overall") |>
filterGroup(species != "overall") |>
scatterPlot(
x = "density_x",
y = "density_y",
line = TRUE,
point = FALSE,
ribbon = FALSE,
facet = cdm_name ~ variable_name,
colour = "species"
) +
ggplot2::facet_grid(cdm_name ~ variable_name, scales = "free_x")
## -----------------------------------------------------------------------------
penguinsSummary |>
filter(variable_name == "flipper_length_mm") |>
filterStrata(year != "overall", sex %in% c("female", "male")) |>
scatterPlot(
x = c("year", "sex"),
y = "median",
ymin = "q25",
ymax = "q75",
line = FALSE,
point = TRUE,
ribbon = FALSE,
facet = cdm_name ~ species,
colour = "sex",
group = c("year", "sex")
) +
ggplot2::coord_flip() +
ggplot2::labs(y = "Flipper length (mm)")
## -----------------------------------------------------------------------------
penguinsSummary |>
filter(variable_name %in% c(
"flipper_length_mm", "bill_length_mm", "bill_depth_mm")) |>
filterStrata(sex == "overall") |>
scatterPlot(
x = "year",
y = "median",
ymin = "min",
ymax = "max",
line = FALSE,
point = TRUE,
ribbon = TRUE,
facet = cdm_name ~ species,
colour = "variable_name",
group = c("variable_name")
)
## -----------------------------------------------------------------------------
penguinsSummary |>
filter(variable_name == "number records") |>
filterGroup(species != "overall") |>
filterStrata(sex != "overall", year != "overall") |>
barPlot(
x = "year",
y = "count",
colour = "sex",
facet = cdm_name ~ species
)
## -----------------------------------------------------------------------------
penguinsSummary |>
filter(variable_name == "body_mass_g") |>
boxPlot(x = "year", facet = c("cdm_name", "species"), colour = "sex")
## -----------------------------------------------------------------------------
penguinsSummary |>
filter(variable_name == "body_mass_g") |>
boxPlot(x = "year", facet = cdm_name ~ species, colour = "sex")
## -----------------------------------------------------------------------------
penguinsSummary |>
filter(variable_name == "body_mass_g") |>
filterGroup(species != "overall") |>
filterStrata(sex %in% c("female", "male"), year != "overall") |>
boxPlot(facet = cdm_name ~ species + sex, colour = "year")
## -----------------------------------------------------------------------------
penguinsTidy <- penguinsSummary |>
filter(!estimate_name %in% c("density_x", "density_y")) |> # remove density for simplicity
tidy()
penguinsTidy |> glimpse()
## -----------------------------------------------------------------------------
penguinsTidy |> class()
## -----------------------------------------------------------------------------
penguinsTidy |>
filter(
variable_name == "body_mass_g",
species != "overall",
sex %in% c("female", "male"),
year != "overall"
) |>
boxPlot(facet = cdm_name ~ species + sex, colour = "year")
## -----------------------------------------------------------------------------
library(ggplot2)
penguinsSummary |>
filter(variable_name == "number records") |>
tidy() |>
ggplot(aes(x = year, y = sex, fill = count, label = count)) +
geom_tile() +
scale_fill_viridis_c(trans = "log") +
geom_text() +
facet_grid(cdm_name ~ species)
## -----------------------------------------------------------------------------
penguinsSummary |>
filter(
group_level != "overall",
strata_name == "year &&& sex",
!grepl("NA", strata_level),
variable_name == "body_mass_g") |>
boxPlot(facet = cdm_name ~ species + sex, colour = "year") +
ylim(c(0, 6500)) +
labs(x = "My custom x label") +
theme(legend.position = "top")
## ----eval=FALSE---------------------------------------------------------------
# ggsave(
# "figure8.png", plot = last_plot(), device = "png", width = 15, height = 12,
# units = "cm", dpi = 300)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.