Nothing
# --------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See LICENSE.txt in the project root for license information.
# --------------------------------------------------------------------------------------------
#' @title Generate Rogers Adoption Curve plots for Copilot usage
#'
#' @author Chris Gideon <chris.gideon@@microsoft.com>
#'
#' @description
#' Creates various visualizations based on the Rogers adoption curve theory,
#' analyzing the adoption patterns of Copilot usage. The function identifies
#' habitual users using the `identify_habit()` function and then creates
#' adoption curve visualizations based on different time frames and
#' organizational groupings.
#'
#' @details
#' This function provides four distinct plot modes to analyze adoption patterns:
#'
#' \strong{Plot Mode 1 - Cumulative Adoption Curve:}
#' Shows the classic Rogers adoption curve with cumulative percentage of habitual
#' users over time. This S-shaped curve helps identify the pace of adoption and
#' when saturation begins. Steep sections indicate rapid adoption periods, while
#' flat sections suggest slower uptake or natural limits.
#'
#' \strong{Plot Mode 2 - Weekly Adoption Rate:}
#' Displays the number of new habitual users identified each week, with a
#' 3-week moving average line to smooth volatility. This view helps identify
#' adoption spikes, seasonal patterns, and the natural ebb and flow of user
#' onboarding. High bars indicate successful onboarding periods.
#'
#' \strong{Plot Mode 3 - Enablement-Based Adoption:}
#' Analyzes adoption relative to when users were first enabled (had access).
#' Users are classified into Rogers segments (Innovators, Early Adopters,
#' Early/Late Majority, Laggards) based on how quickly they adopted after
#' enablement. This helps understand the natural distribution of adoption
#' speed within your organization.
#'
#' \strong{Plot Mode 4 - Cumulative Enablement-Adjusted:}
#' Similar to Mode 1 but only includes users who had enablement data, providing
#' a more accurate view of adoption among those who actually had access to the
#' technology. This removes noise from users who may not have been properly
#' enabled.
#'
#' \strong{Interpretation Guidelines:}
#' \itemize{
#' \item Early steep curves suggest strong product-market fit
#' \item Plateaus may indicate training needs or feature limitations
#' \item Seasonal patterns often reflect organizational training cycles
#' \item Rogers segments help identify user personas for targeted interventions
#' }
#'
#' @param data Data frame containing Person Query data to be analyzed. Must
#' contain `PersonId`, `MetricDate`, and the specified metrics.
#' @param hrvar Character string specifying the HR attribute or organizational
#' variable to group by. Default is `NULL`, for no grouping.
#' @param metric Character string containing the name of the metric to analyze
#' for habit identification, e.g. "Total_Copilot_actions". This is passed to
#' `identify_habit()`.
#' @param width Integer specifying the number of qualifying counts to consider
#' for a habit. Passed to `identify_habit()`. Default is 9.
#' @param max_window Integer specifying the maximum unit of dates to consider a
#' qualifying window for a habit. Passed to `identify_habit()`. Default is 12.
#' @param threshold Numeric value specifying the minimum threshold for the
#' metric to be considered a qualifying count. Passed to `identify_habit()`.
#' Default is 1.
#' @param start_metric Character string containing the name of the metric used
#' for determining enablement start date. This metric should track when users
#' first gained access to the technology being analyzed. The function identifies
#' the earliest date where this metric is greater than 0 for each user as their
#' "enablement date". This is then used in plot modes 3 and 4 to calculate
#' time-to-adoption and Rogers segment classifications. The suggested variable
#' is "Total_Copilot_enabled_days", but any metric that indicates access or
#' licensing status can be used (e.g., "License_assigned_days", "Access_granted").
#' @param return Character vector specifying what to return. Valid inputs are
#' "plot", "data", and "table". Default is "plot".
#' @param plot_mode Integer or character string determining which plot to return.
#' Valid inputs are:
#' \itemize{
#' \item 1 or "cumulative": Rogers Adoption Curve showing cumulative adoption
#' \item 2 or "weekly": Weekly Rate of adoption showing new habitual users
#' \item 3 or "enablement": Enablement-based adoption rate with Rogers segments
#' \item 4 or "cumulative_enablement": Cumulative adoption adjusted for enablement
#' }
#' Default is 1.
#'
#' @import dplyr
#' @import ggplot2
#' @import scales
#' @importFrom rlang .data
#' @importFrom stats as.formula
#'
#' @family Visualization
#' @family Adoption Analysis
#'
#' @examples
#' # Basic Rogers adoption curve
#' create_rogers(
#' data = pq_data,
#' metric = "Copilot_actions_taken_in_Teams",
#' plot_mode = 1
#' )
#'
#' # Weekly adoption rate by organization
#' create_rogers(
#' data = pq_data,
#' hrvar = "Organization",
#' metric = "Copilot_actions_taken_in_Teams",
#' plot_mode = 2
#' )
#'
#' # Enablement-based adoption
#' create_rogers(
#' data = pq_data,
#' metric = "Copilot_actions_taken_in_Teams",
#' start_metric = "Total_Copilot_enabled_days",
#' plot_mode = 3
#' )
#'
#' @return
#' Returns a 'ggplot' object by default when 'plot' is passed in `return`.
#' When 'table' is passed, a summary table is returned as a data frame.
#' When 'data' is passed, the processed data with habit classifications is returned.
#'
#' @export
create_rogers <- function(data,
hrvar = NULL,
metric,
width = 9,
max_window = 12,
threshold = 1,
start_metric,
return = "plot",
plot_mode = 1) {
## Check inputs
required_variables <- c("MetricDate", metric, "PersonId")
## Error message if variables are not present
data %>%
check_inputs(requirements = required_variables)
## Check if start_metric exists for enablement-based plots
if (plot_mode %in% c(3, 4, "enablement", "cumulative_enablement")) {
if (!start_metric %in% names(data)) {
stop(paste("Column", start_metric, "not found in data for enablement-based analysis."))
}
}
## Apply habit identification
data_with_habit <- data %>%
identify_habit(
metric = metric,
threshold = threshold,
width = width,
max_window = max_window,
return = "data"
)
## Find the earliest "habitual" date per PersonId
adoption_week_df <- data_with_habit %>%
filter(.data$IsHabit == TRUE) %>%
group_by(.data$PersonId) %>%
summarise(adoption_week = min(.data$MetricDate, na.rm = TRUE), .groups = "drop")
## Handle hrvar
if (!is.null(hrvar) && hrvar %in% names(data)) {
# Add hrvar to adoption data
hrvar_lookup <- data %>%
select(.data$PersonId, !!sym(hrvar)) %>%
distinct()
adoption_week_df <- adoption_week_df %>%
left_join(hrvar_lookup, by = "PersonId")
}
## Return data if requested
if (return == "data") {
return(data_with_habit)
}
## Convert plot_mode to numeric for easier handling
if (is.character(plot_mode)) {
plot_mode <- case_when(
plot_mode == "cumulative" ~ 1,
plot_mode == "weekly" ~ 2,
plot_mode == "enablement" ~ 3,
plot_mode == "cumulative_enablement" ~ 4,
TRUE ~ 1
)
}
## Generate plots based on plot_mode
if (plot_mode == 1) {
# Rogers Adoption Curve (Cumulative)
if (!is.null(hrvar) && hrvar %in% names(data)) {
# By hrvar
rogers_curve <- adoption_week_df %>%
count(!!sym(hrvar), .data$adoption_week) %>%
group_by(!!sym(hrvar)) %>%
arrange(.data$adoption_week) %>%
mutate(
cumulative_adopters = cumsum(.data$n),
cumulative_percent = .data$cumulative_adopters / sum(.data$n)
) %>%
ungroup()
plot_object <- ggplot(rogers_curve, aes(x = .data$adoption_week, y = .data$cumulative_percent, color = !!sym(hrvar))) +
geom_line(size = 1) +
facet_wrap(as.formula(paste("~", hrvar)), scales = "free_y") +
scale_y_continuous(labels = scales::percent_format()) +
labs(
title = paste("Rogers Adoption Curve by", hrvar),
subtitle = paste("Cumulative adoption of", us_to_space(metric)),
x = "Week of Habitual Adoption",
y = "Cumulative % of Habitual Users",
color = hrvar,
caption = extract_date_range(data, return = "text")
) +
theme_wpa_basic()
} else {
# Overall
rogers_curve <- adoption_week_df %>%
count(.data$adoption_week) %>%
arrange(.data$adoption_week) %>%
mutate(
cumulative_adopters = cumsum(.data$n),
cumulative_percent = .data$cumulative_adopters / sum(.data$n)
)
plot_object <- ggplot(rogers_curve, aes(x = .data$adoption_week, y = .data$cumulative_percent)) +
geom_line(size = 1.2, color = "#1c66b0") +
geom_point() +
scale_y_continuous(labels = scales::percent_format()) +
labs(
title = paste("Rogers Adoption Curve for", us_to_space(metric)),
x = "Week of Adoption",
y = "Cumulative % of Habitual Users",
caption = extract_date_range(data, return = "text")
) +
theme_wpa_basic()
}
} else if (plot_mode == 2) {
# Weekly Rate of Adoption
if (!is.null(hrvar) && hrvar %in% names(data)) {
# By hrvar
adoption_rate <- adoption_week_df %>%
count(!!sym(hrvar), .data$adoption_week) %>%
group_by(!!sym(hrvar)) %>%
arrange(.data$adoption_week) %>%
mutate(
moving_avg = slider::slide_dbl(.data$n, mean, .before = 2, .complete = TRUE)
) %>%
rename(new_adopters = .data$n) %>%
ungroup()
plot_object <- ggplot(adoption_rate, aes(x = .data$adoption_week, y = .data$new_adopters)) +
geom_col(fill = "#1c66b0") +
geom_line(aes(y = .data$moving_avg), color = "#0c336e", size = 1) +
facet_wrap(as.formula(paste("~", hrvar)), scales = "free_y") +
labs(
title = paste("Weekly Rate of", us_to_space(metric), "Adoption by", hrvar),
subtitle = "New habitual users each week",
x = "Week",
y = "New Habitual Users",
caption = extract_date_range(data, return = "text")
) +
theme_wpa_basic()
} else {
# Overall
adoption_rate <- adoption_week_df %>%
count(.data$adoption_week) %>%
arrange(.data$adoption_week) %>%
rename(new_adopters = .data$n) %>%
mutate(
moving_avg = slider::slide_dbl(.data$new_adopters, mean, .before = 2, .complete = TRUE)
)
plot_object <- ggplot(adoption_rate, aes(x = .data$adoption_week, y = .data$new_adopters)) +
geom_col(fill = "#1c66b0") +
geom_line(aes(y = .data$moving_avg), color = "#0c336e", size = 1.2) +
labs(
title = paste("Weekly Rate of", us_to_space(metric), "Adoption"),
subtitle = "New habitual users identified each week",
x = "Week",
y = "New Habitual Users",
caption = extract_date_range(data, return = "text")
) +
theme_wpa_basic()
}
} else if (plot_mode == 3) {
# Enablement-based Adoption Rate
enable_week_df <- data_with_habit %>%
filter(!!sym(start_metric) > 0) %>%
group_by(.data$PersonId) %>%
summarise(enable_week = min(.data$MetricDate, na.rm = TRUE), .groups = "drop")
adoption_week_df2 <- adoption_week_df %>%
left_join(enable_week_df, by = "PersonId") %>%
filter(!is.na(.data$enable_week)) %>%
mutate(
weeks_to_adopt = as.numeric(difftime(.data$adoption_week, .data$enable_week, units = "weeks")),
adoption_delay_percent = percent_rank(.data$weeks_to_adopt),
RogersSegment_delay = case_when(
.data$adoption_delay_percent <= 0.025 ~ "Innovators",
.data$adoption_delay_percent <= 0.16 ~ "Early Adopters",
.data$adoption_delay_percent <= 0.50 ~ "Early Majority",
.data$adoption_delay_percent <= 0.84 ~ "Late Majority",
TRUE ~ "Laggards"
)
)
weekly_segment_counts <- adoption_week_df2 %>%
count(.data$adoption_week, .data$RogersSegment_delay) %>%
rename(new_adopters = .data$n)
plot_object <- ggplot(weekly_segment_counts, aes(x = .data$adoption_week, y = .data$new_adopters, fill = .data$RogersSegment_delay)) +
geom_col(position = "stack") +
scale_fill_manual(
values = c(
"Innovators" = "#6a51a3",
"Early Adopters" = "#3182bd",
"Early Majority" = "#31a354",
"Late Majority" = "#fd8d3c",
"Laggards" = "#de2d26"
)
) +
labs(
title = paste("Enablement-Based", us_to_space(metric), "Adoption Rate"),
subtitle = "Weekly new habitual users, segmented by Rogers category (delay from enablement)",
x = "Week of Adoption",
y = "Number of New Habitual Users",
fill = "Rogers Segment",
caption = extract_date_range(data, return = "text")
) +
theme_wpa_basic()
} else if (plot_mode == 4) {
# Cumulative Enablement-based Adoption
enable_week_df <- data_with_habit %>%
filter(!!sym(start_metric) > 0) %>%
group_by(.data$PersonId) %>%
summarise(enable_week = min(.data$MetricDate, na.rm = TRUE), .groups = "drop")
adoption_week_df2 <- adoption_week_df %>%
left_join(enable_week_df, by = "PersonId") %>%
filter(!is.na(.data$enable_week))
cumulative_df <- adoption_week_df2 %>%
count(.data$adoption_week) %>%
arrange(.data$adoption_week) %>%
mutate(
cumulative = cumsum(.data$n),
cumulative_percent = .data$cumulative / sum(.data$n)
)
plot_object <- ggplot(cumulative_df, aes(x = .data$adoption_week, y = .data$cumulative_percent)) +
geom_line(size = 1.2, color = "#1c66b0") +
geom_point() +
scale_y_continuous(labels = scales::percent) +
labs(
title = paste("Cumulative", us_to_space(metric), "Adoption Over Time (Adjusted for Enablement)"),
x = "Adoption Week",
y = "Cumulative % of Users",
caption = extract_date_range(data, return = "text")
) +
theme_wpa_basic()
} else {
stop("Invalid plot_mode. Use 1-4 or 'cumulative', 'weekly', 'enablement', 'cumulative_enablement'.")
}
## Return based on return parameter
if (return == "plot") {
return(plot_object)
} else if (return == "table") {
# Return summary table
summary_table <- adoption_week_df %>%
summarise(
total_adopters = n(),
earliest_adoption = min(.data$adoption_week, na.rm = TRUE),
latest_adoption = max(.data$adoption_week, na.rm = TRUE),
median_adoption_week = median(.data$adoption_week, na.rm = TRUE)
)
return(summary_table)
} else {
stop("Please enter a valid input for `return`: 'plot', 'data', or 'table'.")
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.