Nothing
################################################################################
#### Baseline Results for Chemotherapy Model
################################################################################
### Packages
library(colorspace)
### Run the Model
source("04_analysis/01_model_run.R")
### Mean costs and effects
mean_costs_effects <- apply(m_costs_effects, c(2, 3), mean)
write.csv(mean_costs_effects, "07_tables/Mean_Costs_Effects.csv")
### Incremental Cost-Effectiveness Ratio (ICER)
ICER <- mean(m_costs_effects[, 2, 2] - m_costs_effects[, 2, 1]) /
mean(m_costs_effects[, 1, 2] - m_costs_effects[, 1, 1])
ICER
write.csv(ICER, "07_tables/ICER.csv")
### Cost-Effectiveness Acceptability Curve
colours <- rainbow_hcl(12)
m_max <- apply(m_net_benefit, c(1,3), which.max)
pdf("06_figs/CEAC.pdf")
plot(wtp_seq, apply(m_max == 2, 2, mean), type = "l", lwd = 3,
ylim = c(0,1),
col = colours[1],
xlab = "Willingness-to-pay",
ylab = "Probability of Cost Effectiveness for Treatment 2",
main = "Cost Effectiveness Acceptability Curve")
dev.off()
### Cost-Effectiveness Acceptability Frontier
m_ceaf <- cbind(apply(m_max == 1, 2, mean), apply(m_max == 2, 2, mean))
pdf("06_figs/CEAF.pdf")
plot(wtp_seq, m_ceaf[, 2], type = "l", lwd = 3,
ylim = c(0,1),
col = colours[1],
xlab = "Willingness-to-pay",
ylab = "Probability of Cost Effectiveness",
main = "Cost Effectiveness Acceptability Frontier")
points(wtp_seq, m_ceaf[, 1], type = "l", col = colours[7], lwd = 3)
v_optimal_treatment <- apply(apply(m_net_benefit, c(2,3), mean), 2, which.max)
v_ceaf <- vector(length = n_wtp)
for(i in 1:n_wtp){
v_ceaf[i] <- m_ceaf[i, v_optimal_treatment[i]]
}
points(wtp_seq, v_ceaf, pch = 19, cex = 0.5)
points(wtp_seq, v_ceaf, pch = 0)
legend("bottomright", c("Treatment 1", "Treatment 2", "Frontier"),
lwd = c(2, 2, NA), pch = c(NA, NA, 0),
col = c(colours[1], colours[7], "black"))
dev.off()
### Baseline willingness to pay = 20000
baseline_wtp <- which(wtp_seq == 20000)
# Average net benefit
mean_net_benefit <- apply(m_net_benefit[, , baseline_wtp], 2, mean)
mean_net_benefit
names(mean_net_benefit) <- c("Treatment 1", "Treatment 2")
mean_net_benefit / 20000
write.csv(mean_net_benefit, "07_tables/Mean_Net_Benefit.csv")
# INB
INB <- diff(mean_net_benefit)
INB
q_INB <- quantile(apply(m_net_benefit[, , baseline_wtp], 1, diff), prob = c(0.025, 0.975))
q_INB
# Optimal treatment
d_star <- which.max(mean_net_benefit)
d_star
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.