Nothing
#' Inverse of a Coefficient Matrix \eqn{\tilde{\mathcal{C}}_k}
#'
#' This function computes the inverse of the coefficient matrix \eqn{\tilde{\mathcal{C}}_k}
#'
#' @param k The order of the \eqn{\tilde{\mathcal{C}}_k} matrix
#' @param alpha The type of beta-Wishart distribution (\eqn{\alpha=2/\beta}):
#' \itemize{
#' \item 1/2: Quaternion Wishart
#' \item 1: Complex Wishart
#' \item 2: Real Wishart (default)
#' }
#'
#' @return Inverse of a coefficient matrix \eqn{\tilde{\mathcal{C}}_k} that allows us to
#' obtain \eqn{E[p_{\lambda}(W^{-1})W^{-r}]}, where \eqn{r+|\lambda|=k}
#' and \eqn{W ~ W_m^{\beta}(n,\Sigma)}. The matrix is represented as a
#' 3-dimensional array where each slice along the third dimension represents
#' a coefficient matrix of the polynomial in descending powers of \eqn{\tilde{n}}.
#'
#' @export
#'
#' @examples
#' # Example 1:
#' qkn_coeff(2) # For real Wishart distribution with k = 2
#' # Example 2:
#' qkn_coeff(3, 1) # For complex Wishart distribution with k = 3
#'
#' # Example 3:
#' qkn_coeff(2, 1/2) # For quaternion Wishart distribution with k = 2
#'
qkn_coeff <- function(k, alpha = 2) {
if (k == 1) return(1)
c <- array(1, dim = c(1, 1, 1)) # C_1^{-1} = n1
h <- array(1, dim = c(1, 1, 1)) # H_1^{-1} = n1
D <- -dkmap(1, alpha)
l2 <- dim(c)[1]
for (i in 1:(k-1)) {
l1 <- dim(D)[1]
c1 <- c
Da <- D[, 1:l2, drop=FALSE]
Db <- D[, (l2+1):ncol(D), drop=FALSE]
c <- array(0, dim = c(l1, l1, i + 1))
c[1:l2, 1:l2, 1:i] <- c1
c[(l2+1):l1, (l2+1):l1, 1:i] <- h
for (j in 1:i) {
c[, , j + 1] <- c[, , j + 1] + cbind(Da %*% c1[, , j], Db %*% h[, , j])
}
if (i < (k-1)) {
l2 <- dim(c)[1]
D <- -dkmap(i + 1, alpha)
D12 <- D[1:l2, (l2+1):ncol(D)]
D21 <- D[(l2+1):nrow(D), 1:l2]
h <- array(0, dim = c(dim(D21)[1], dim(D12)[2], i + 1))
for (j in 1:(i + 1)) {
h[, , j] <- D21 %*% c[, , j] %*% D12
}
h <- h / (i + 1) / alpha
}
}
return(c)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.