Nothing
#' Precipitation transition probabilities
#'
#' Calculate seasonal precipitation transition probability matrix for each year.
#' Computes transition probabilities for wet/dry spells.
#' Calculates values for each year, then takes average of all years.
#'
#' @param dat.d Training data processed from prepData wrapper function.
#'
# @rawNamespace import(stats, except = filter)
#'
#'
#' @noRd
#'
"getPtpm" <- function(dat.d, traceThreshold){
#calculate seasonal precipitation transition probability matrix for each year
#
yr.d = dat.d$year
uyr = unique(yr.d)
nyr = length(uyr)
#precipitation data
pcp.d = dat.d$prcp
#transition probabilities for wet/dry spells
#compute wet and dry transitions for each state (season) in a year, repeat for each year
tpm.y2 = array(data = NA, dim = c(2,2,max(dat.d$states), length(uyr)))
j=1
for(j in 1:length(uyr)){
k=1
for(k in 1:max(dat.d$states)){
if(sum(dat.d$states == k & yr.d == uyr[j]) == 0) next
x = ts((pcp.d[dat.d$states == k & yr.d == uyr[j]] >= traceThreshold) + 0,1)
tpm.tmp = transProbMatrix(x)
tpm.y2[as.numeric(rownames(tpm.tmp))+1, as.numeric(colnames(tpm.tmp))+1,
k,j] = tpm.tmp
}#k
}#j
# collapse tpm.y2 over all years
tpm.y = apply(tpm.y2, 1:3, mean, na.rm=T)
tpm.y[is.na(tpm.y)] = 0
#tpm.y2[is.na(tpm.y2)]=0
for(j in 1:max(dat.d$states)){
for(i in 1:nrow(tpm.y[,,j])){
if(max(tpm.y[i,,j]) == 0) next
tpm.y[i,,j] = tpm.y[i,,j]/sum(tpm.y[i,,j])
}
}
#default
olist=list("tpm.y2" = tpm.y2,"tpm.y" = tpm.y)
return(olist)
} #end function
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.