DeJongF4Factory | R Documentation |
This function factory sets up the problem environment
for De Jong's function F4.
F4 is a 30-dimensional quartic function with Gaussian noise.
It is a continuous, convex, unimodal, high-dimensional quartic function
with Gaussian noise. For validation, \epsilon = 3*\sigma
will work most of the time.
Note: There exist 2^{30}
maxima (without noise)!
DeJongF4Factory()
A problem environment represented as a list of functions:
$name()
: The name of the problem environment.
$bitlength()
: The vector of the number of bits of
each parameter of the function.
$genelength()
: The number of bits of the gene.
$lb()
: The vector of lower bounds of the parameters.
$ub()
: The vector of upper bounds of the parameters.
$f(parm, gene=0, lF=0)
): The fitness function.
Additional elements:
$describe()
: Print a description of the problem environment to the console.
$solution()
: The solution structure. A named list with minimum
, maximum
and
2 lists of equivalent solutions: minpoints
, maxpoints
.
De Jong, Kenneth A. (1975): An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis, Michigan, Ann Arbor, pp. 203-206. <https://deepblue.lib.umich.edu/handle/2027.42/4507>
Other Problem Environments:
DelayedPFactory()
,
Parabola2DEarlyFactory()
,
Parabola2DErrFactory()
,
Parabola2DFactory()
,
envXOR
,
lau15
,
newEnvXOR()
,
newTSP()
DeJongF4<-DeJongF4Factory()
DeJongF4$name()
DeJongF4$bitlength()
DeJongF4$genelength()
DeJongF4$lb()
DeJongF4$ub()
DeJongF4$f(c(2.01, -1.05, 4.95, -4.3, -3.0))
DeJongF4$f(c(2.01, -1.05, 4.95, -4.3, -3.0))
DeJongF4$describe()
DeJongF4$solution()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.