SelectPropFitDiffOnln | R Documentation |
SelectPropFitDiffOnln()
implements selection
proportional to fitness differences. Negative fitness
vectors are shifted to R^+
.
The default of the function lF$Offset()
is 1
.
Holland's schema theorem uses this selection function.
See John Holland (1975) for further information.
SelectPropFitDiffOnln(fit, lF, size = 1)
fit |
Fitness vector. |
lF |
Local configuration. |
size |
Number of selected genes. Default: 1. |
This is a fast implementation which gives exactly the same
results as the functions SelectPropFitDiff()
and SelectPropDiffFitM()
.
Its runtime is O(n . ln(n))
.
An epsilon (lF$Eps()
) is added to the fitness
difference vector. This guarantees numerical stability,
even if all genes in the population have the same fitness.
The index vector of the selected genes.
The code of this function has been adapted by Fabian Aisenbrey.
There is a potential slow for-loop in the code.
Holland, John (1975): Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor. (ISBN:0-472-08460-7)
Other Selection Functions:
SelectDuel()
,
SelectLRSelective()
,
SelectLinearRankTSR()
,
SelectPropFit()
,
SelectPropFitDiff()
,
SelectPropFitDiffM()
,
SelectPropFitM()
,
SelectPropFitOnln()
,
SelectSTournament()
,
SelectSUS()
,
SelectTournament()
,
SelectUniform()
,
SelectUniformP()
fit<-sample(10, 15, replace=TRUE)
SelectPropFitDiffOnln(fit, NewlFselectGenes())
SelectPropFitOnln(fit, NewlFselectGenes(), length(fit))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.