SelectLinearRankTSR | R Documentation |
SelectLinearRankTSR()
implements selection
with interpolated target sampling rates.
SelectLinearRankTSR(fit, lF, size = 1)
fit |
Fitness vector. |
lF |
Local configuration. |
size |
Size of return vector (default: 1). |
The target sampling rate is a linear interpolation
between lF$MaxTSR()
and Min<-2-lF$MaxTSR()
,
because the sum of the target sampling rates is $n$.
The target sampling rates are computed and used as a fitness
vector for stochastic universal sampling algorithm
implemented by SelectSUS()
.
lF$MaxTSR()
should be in [1.0, 2.0].
TODO: More efficient implementation. We use two sorts!
The index vector of selected genes.
Grefenstette, John J. and Baker, James E. (1989): How Genetic Algorithms Work: A Critical Look at Implicit Parallelism In Schaffer, J. David (Ed.) Proceedings of the Third International Conference on Genetic Algorithms on Genetic Algorithms, pp. 20-27. (ISBN:1-55860-066-3)
Other Selection Functions:
SelectDuel()
,
SelectLRSelective()
,
SelectPropFit()
,
SelectPropFitDiff()
,
SelectPropFitDiffM()
,
SelectPropFitDiffOnln()
,
SelectPropFitM()
,
SelectPropFitOnln()
,
SelectSTournament()
,
SelectSUS()
,
SelectTournament()
,
SelectUniform()
,
SelectUniformP()
fit<-sample(10, 15, replace=TRUE)
SelectLinearRankTSR(fit, NewlFselectGenes())
SelectLinearRankTSR(fit, NewlFselectGenes(), length(fit))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.