| SelectPropFitDiffM | R Documentation |
SelectPropFitDiffM() implements selection
proportional to fitness differences.
It selects a gene from the population
with a probability proportional to the fitness
difference to the gene with minimal fitness.
The default of the function lF$Offset() is 1.
The fitness of survival of the gene with
minimal fitness is set by lF$Eps()
to 0.01 per default.
See equation (7.45) Andreas Geyer-Schulz (1997), p. 205.
SelectPropFitDiffM(fit, lF, size = 1)
fit |
Fitness vector. |
lF |
Local configuration. |
size |
Number of selected genes. Default: 1. |
The index vector of the selected genes.
outer uses O(n^2) memory cells.
SelectPopFitDiff() is a dynamic scaling function.
Andreas Geyer-Schulz (1997): Fuzzy Rule-Based Expert Systems and Genetic Machine Learning, Physica, Heidelberg. <978-3-7908-0830-X>
Other Selection Functions:
SelectDuel(),
SelectLRSelective(),
SelectLinearRankTSR(),
SelectPropFit(),
SelectPropFitDiff(),
SelectPropFitDiffOnln(),
SelectPropFitM(),
SelectPropFitOnln(),
SelectSTournament(),
SelectSUS(),
SelectTournament(),
SelectUniform(),
SelectUniformP()
fit<-sample(10, 15, replace=TRUE)
SelectPropFitDiffM(fit, NewlFselectGenes())
SelectPropFitDiffM(fit, NewlFselectGenes(), length(fit))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.