SelectPropFitDiffM | R Documentation |
SelectPropFitDiffM()
implements selection
proportional to fitness differences.
It selects a gene from the population
with a probability proportional to the fitness
difference to the gene with minimal fitness.
The default of the function lF$Offset()
is 1
.
The fitness of survival of the gene with
minimal fitness is set by lF$Eps()
to 0.01
per default.
See equation (7.45) Andreas Geyer-Schulz (1997), p. 205.
SelectPropFitDiffM(fit, lF, size = 1)
fit |
Fitness vector. |
lF |
Local configuration. |
size |
Number of selected genes. Default: 1. |
The index vector of the selected genes.
outer
uses O(n^2)
memory cells.
SelectPopFitDiff()
is a dynamic scaling function.
Andreas Geyer-Schulz (1997): Fuzzy Rule-Based Expert Systems and Genetic Machine Learning, Physica, Heidelberg. <978-3-7908-0830-X>
Other Selection Functions:
SelectDuel()
,
SelectLRSelective()
,
SelectLinearRankTSR()
,
SelectPropFit()
,
SelectPropFitDiff()
,
SelectPropFitDiffOnln()
,
SelectPropFitM()
,
SelectPropFitOnln()
,
SelectSTournament()
,
SelectSUS()
,
SelectTournament()
,
SelectUniform()
,
SelectUniformP()
fit<-sample(10, 15, replace=TRUE)
SelectPropFitDiffM(fit, NewlFselectGenes())
SelectPropFitDiffM(fit, NewlFselectGenes(), length(fit))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.