absval.wres.vs.pred.by.cov | R Documentation |
This is a plot of absolute population weighted residuals (|WRES|) vs
population predictions (PRED) conditioned by covariates, a specific function
in Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.default
function. Most of the options take their default
values from xpose.data object but may be overridden by supplying them as
arguments.
absval.wres.vs.pred.by.cov(
object,
ylb = "|WRES|",
type = "p",
smooth = TRUE,
ids = FALSE,
idsdir = "up",
main = "Default",
...
)
object |
An xpose.data object. |
ylb |
A string giving the label for the y-axis. |
type |
Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
ids |
Logical. Should id labels on points be shown? |
idsdir |
Direction for displaying point labels. The default is "up", since we are displaying absolute values. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Each of the covariates in the Xpose data object, as specified in
object@Prefs@Xvardef$Covariates
, is evaluated in turn, creating a
stack of plots.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Returns a stack of xyplots of |WRES| vs PRED, conditioned on covariates.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
absval.wres.vs.pred
,
xpose.plot.default
, xpose.panel.default
,
xyplot
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb
## A vanilla plot
absval.wres.vs.pred.by.cov(xpdb)
## Custom axis labels
absval.wres.vs.pred.by.cov(xpdb, ylb="|CWRES|", xlb="PRED")
## Custom colours and symbols, IDs
absval.wres.vs.pred.by.cov(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.