Categorical (visual) predictive check.

Share:

Description

Categorical (visual) predictive check plots.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
cat.pc(object,
           dv=xvardef("dv",object),
           idv=xvardef("idv",object),
           level.to.plot=NULL,
           subset=NULL,
           histo=T,
           median.line=F,
           PI.lines=F,
           xlb=if(histo){
             paste("Proportion of ",dv)
           } else {
             paste(idv)
           },
           ylb=if(histo){
             paste("Percent of Total")
           } else {
             paste("Proportion of Total")
           },
           main=xpose.create.title.text(NULL,dv,
             "Predictive check of",object,subset=subset,...),
           strip="Default",
           ...)

Arguments

object

Xpose data object.

dv

The dependent variable (e.g. "DV" or "CP".)

idv

The indenpent variable (e.g. "TIME".)

level.to.plot

The levels to plot.

subset

Subset of data.

histo

If FALSE then a VPC is created, given that idv is defined.

median.line

Make a median line?

PI.lines

Make prediction interval lines?

xlb

Label for x axis.

ylb

label for y axis.

main

Main title.

strip

Defining how the strips should appear in the conditioning plots.

...

Extra arguments passed to the function.

Author(s)

Andrew C. Hooker

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
## Not run: 
## read in table files
runno <- 45
xpdb <- xpose.data(runno)

## create proportion (visual) predictive check
cat.pc(xpdb,idv=NULL)
cat.pc(xpdb,idv="DOSE")
cat.pc(xpdb,idv="DOSE",histo=F)
cat.pc(xpdb,idv="TIME",histo=T,level.to.plot=1)

## End(Not run)

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.