Nothing
#' @title xdc_index
#'
#' @description This is a general function that calculates the x-index, xd-index, and xc-index for an institution using bibliometric data from an edge list. Returns the x-index or the xd-index depending on the input vector in "p1". Returns x-index when "p1" is the dataframe column containing keywords and xd-index when "p1" the dataframe column containing categories. Returns a summary table listing x-index, xd-index, and xc-index when both "p1" and "p2" are supplied. In this case, "p2" must be the higher level, i.e., categories and "p1" must be the lower level, i.e., keywords. The function is suitable for including inside loops when only one input vector is provided. However, for looping xc-index, a separate 'xc_index' function is provided which also includes an option to produce plots. Similarly, 'x_index' and 'xd_index' are standalone functions for calculating x-index and xd-index respectively as well as producing plots.
#'
#' @param df Data frame object containing bibliometric data. This data frame must have at least three columns: one for keywords/categories, one for unique IDs, and one for citation counts. Each row in the data frame should represent a document or publication.
#' @param p1 Character string specifying the name of the column in "df" that contains the first parameter of interest. Generally, this will be a column for keywords/categories. Each cell in this column may contain no keywords/categories (missing), a single keyword/category or multiple keywords/categories separated by a specified delimiter. Input the column for keywords to calculate the x-index, and the column for categories to calculate the xd-index.
#' @param p2 Character string specifying the name of the column in "df" that contains the second parameter of interest. This is an optional parameter only required when calculating xc-index. When an input is provided, it is expected that "p1" is the lower level, generally keywords, and "p2" is the higher level, generally categories. Each cell in this column may contain no categories (missing), a single category or multiple categories separated by a specified delimiter. The default is set to "NULL".
#' @param id Character string specifying the name of the column in "df" that contains unique identifiers for each document. Each cell in this column must contain a single ID (unless missing) and not multiple IDs.
#' @param cit Character string specifying the name of the column in "df" that contains the number of citations each document has received. Citations must be represented as integers. Each cell in this column should contain a single integer value (unless missing) representing the citation count for the corresponding document.
#' @param dlm1 Character string specifying the delimiter used in the "p1" column to separate multiple keywords/categories within a single cell. The delimiter should be consistent across the entire "p1" column. Common delimiters include ";", "/", ":", and ",". The default delimiter is set to ";".
#' @param dlm2 Character string specifying the delimiter used in the "p2" column to separate multiple categories within a single cell. The delimiter should be consistent across the entire "p2" column. Common delimiters include ";", "/", ":", and ",". The default delimiter is set to ";".
#' @param hg Logical value indicating whether to compute Hirsch's h- and Egghe's g-indices. Default set to "FALSE".
#'
#' @return x-index value, and/or xd-index value, and/or xc-index value for institution.
#'
#' @examples
#' # Create an example data frame
#' dat1 <- data.frame(citations = c(0, 1, 1, 2, 3, 5, 8),
#' keywords = c("a; b; c", "b; d", "c", "d", "e; g", "f", "g"),
#' id = c("abc123", "bcd234", "def345", "efg456", "fgh567", "ghi678", "hij789"),
#' categories = c("a; d; e", "b", "c", "d; g", "e", "f", "g"))
#' # Calculate x-index
#' xdc_index(df = dat1, p1 = "keywords", id = "id", cit = "citations")
#' # Calculate xd-index
#' xdc_index(df = dat1, p1 = "categories", id = "id", cit = "citations", hg = TRUE)
#' # Calculate x-index, xd-index, and xc-index together
#' xdc_index(df = dat1, p1 = "keywords", p2 = "categories", id = "id", cit = "citations", hg = TRUE)
#' @export xdc_index
#' @importFrom tidyr separate_rows
#' @importFrom dplyr %>%
#' @importFrom dplyr arrange
#' @importFrom dplyr desc
#' @importFrom dplyr filter
#' @importFrom dplyr mutate
#' @importFrom dplyr row_number
#' @importFrom dplyr select
#' @importFrom Matrix colSums
#' @importFrom Matrix sparseMatrix
#' @importFrom agop index.h
#' @importFrom agop index.g
#' @importFrom stats na.omit
# Function to calculate x-index
xdc_index <- function(df, p1, p2 = NULL, id, cit, dlm1 = ";", dlm2 = ";", hg = FALSE) {
# Load required libraries
if (!requireNamespace("Matrix", quietly = TRUE)) { # require Matrix
stop("Package 'Matrix' is required but not installed.")
}
if (!requireNamespace("agop", quietly = TRUE)) { # require agop
stop("Package 'agop' is required but not installed.")
}
if (!requireNamespace("tidyr", quietly = TRUE)) { # require tidyr
stop("Package 'tidyr' is required but not installed.")
}
if (!requireNamespace("dplyr", quietly = TRUE)) { # require dplyr
stop("Package 'dplyr' is required but not installed.")
}
if (!is.null(p2)) {
### Calculate x-index
# Working data frame
dat1 <- df %>%
select(p1 = {{p1}}, id = {{id}}, cit = {{cit}}) %>%
mutate(p1 = as.character(p1), id = as.character(id), cit = as.numeric(cit)) %>%
na.omit()
# Clean dataset
dat1 <- dat1 %>%
separate_rows(p1, sep = dlm1) %>%
filter(p1 != "") %>%
na.omit()
# Create unique keywords and IDs
unique_keywords <- unique(trimws(dat1$p1))
unique_ids <- unique(dat1$id)
# Create a sparse matrix
citation_matrix <- sparseMatrix(
i = match(dat1$id, unique_ids),
j = match(trimws(dat1$p1), unique_keywords),
x = dat1$cit,
dims = c(length(unique_ids), length(unique_keywords)),
dimnames = list(unique_ids, unique_keywords)
)
# Sum citations for each keyword
col_sum_citation_matrix <- colSums(citation_matrix)
# Calculate x-index
x_index_h <- index.h(unname(col_sum_citation_matrix)) # h-type x-index
x_index_g <- index.g(unname(col_sum_citation_matrix)) # g-type x-index
### Calculate xd-index
# Working data frame
dat2 <- df %>%
select(p2 = {{p2}}, id = {{id}}, cit = {{cit}}) %>%
mutate(p2 = as.character(p2), id = as.character(id), cit = as.numeric(cit)) %>%
na.omit()
# Clean dataset
dat2 <- dat2 %>%
separate_rows(p2, sep = dlm2) %>%
filter(p2 != "") %>%
na.omit()
# Create unique keywords and IDs
unique_keywords <- unique(trimws(dat2$p2))
unique_ids <- unique(dat2$id)
# Create a sparse matrix
citation_matrix <- sparseMatrix(
i = match(dat2$id, unique_ids),
j = match(trimws(dat2$p2), unique_keywords),
x = dat2$cit,
dims = c(length(unique_ids), length(unique_keywords)),
dimnames = list(unique_ids, unique_keywords)
)
# Sum citations for each keyword
col_sum_citation_matrix <- colSums(citation_matrix)
# Calculate xd-index
xd_index_h <- index.h(unname(col_sum_citation_matrix)) # h-type xd-index
xd_index_g <- index.g(unname(col_sum_citation_matrix)) # g-type xd-index
### Calculate xc-index
# Working data frame
dat3 <- df %>%
select(p1 = {{p1}}, p2 = {{p2}}, id = {{id}}, cit = {{cit}}) %>%
mutate(p1 = as.character(p1), p2 = as.character(p2), id = as.character(id), cit = as.numeric(cit)) %>%
na.omit()
# Clean dataset
dat3 <- dat3 %>%
separate_rows(p1, sep = dlm1) %>%
separate_rows(p2, sep = dlm2) %>%
mutate(p1 = trimws(p1), p2 = trimws(p2), p1 = paste0(p1, " (", p2, ")")) %>%
filter(p1 != "") %>%
na.omit()
# Create unique keywords and IDs
unique_keywords <- unique(dat3$p1)
unique_ids <- unique(dat3$id)
# Create a sparse matrix
citation_matrix <- sparseMatrix(
i = match(dat3$id, unique_ids),
j = match(dat3$p1, unique_keywords),
x = dat3$cit,
dims = c(length(unique_ids), length(unique_keywords)),
dimnames = list(unique_ids, unique_keywords)
)
# Sum citations for each categorical keyword
col_sum_citation_matrix <- colSums(citation_matrix)
# Calculate xc-index
xc_index_h <- index.h(unname(col_sum_citation_matrix)) # h-type xc-idnex
xc_index_g <- index.g(unname(col_sum_citation_matrix)) # g-type xc-index
if (hg) {
### h-index
# Working data frame
dat4 <- df %>%
select(id = {{id}}, cit = {{cit}}) %>%
mutate(id = as.character(id), cit = as.numeric(cit)) %>%
na.omit()
# Calculate h-index
h_index_value <- index.h(dat4$cit)
### g-index
# Working data frame
dat5 <- df %>%
select(id = {{id}}, cit = {{cit}}) %>%
mutate(id = as.character(id), cit = as.numeric(cit)) %>%
na.omit()
# Calculate g-index
g_index_value <- index.g(dat5$cit)
### Create output df
df_values <- c(h_index_value, x_index_h, xd_index_h, xc_index_h, # row of h-type index values
g_index_value, x_index_g, xd_index_g, xc_index_g) # row of g-type index values
matrix_data <- matrix(df_values, nrow = 2, ncol = 4, byrow = TRUE) # Transform into matrix
df_out <- data.frame(matrix_data) # Convert matrix into data frame object
colnames(df_out) <- c("index", "x-index", "xd-index", "xc-index") # Assign column names
rownames(df_out) <- c("h-type", "g-type") # Assign row names
} else {
### Create output df
df_values <- c(x_index_h, xd_index_h, xc_index_h, # row of h-type index values
x_index_g, xd_index_g, xc_index_g) # row of g-type index values
matrix_data <- matrix(df_values, nrow = 2, ncol = 3, byrow = TRUE) # Transform into matrix
df_out <- data.frame(matrix_data) # Convert matrix into data frame object
colnames(df_out) <- c("x-index", "xd-index", "xc-index") # Assign column names
rownames(df_out) <- c("h-type", "g-type") # Assign row names
}
# Return value
return(df_out)
}
else {
# Working data frame
dat <- df %>%
select(p1 = {{p1}}, id = {{id}}, cit = {{cit}}) %>%
mutate(p1 = as.character(p1), id = as.character(id), cit = as.numeric(cit)) %>%
na.omit()
# Clean dataset
dat <- dat %>%
separate_rows(p1, sep = dlm1) %>%
filter(p1 != "") %>%
na.omit()
# Create unique keywords and IDs
unique_keywords <- unique(trimws(dat$p1))
unique_ids <- unique(dat$id)
# Create a sparse matrix
citation_matrix <- sparseMatrix(
i = match(dat$id, unique_ids),
j = match(trimws(dat$p1), unique_keywords),
x = dat$cit,
dims = c(length(unique_ids), length(unique_keywords)),
dimnames = list(unique_ids, unique_keywords)
)
# Sum citations for each keyword
col_sum_citation_matrix <- colSums(citation_matrix)
# Calculate xdc-index
xdc_index_h <- index.h(unname(col_sum_citation_matrix)) # h-type index
xdc_index_g <- index.g(unname(col_sum_citation_matrix)) # g-type index
if (hg) {
### h-index
# Working data frame
dath <- df %>%
select(id = {{id}}, cit = {{cit}}) %>%
mutate(id = as.character(id), cit = as.numeric(cit)) %>%
na.omit()
# Calculate h-index
h_index_value <- index.h(dath$cit)
### g-index
# Working data frame
datg <- df %>%
select(id = {{id}}, cit = {{cit}}) %>%
mutate(id = as.character(id), cit = as.numeric(cit)) %>%
na.omit()
# Calculate g-index
g_index_value <- index.g(datg$cit)
# Create output df
df_values <- c(h_index_value, xdc_index_h,
g_index_value, xdc_index_g)
matrix_data <- matrix(df_values, nrow = 2, ncol = 2, byrow = TRUE)
df_out <- data.frame(matrix_data)
colnames(df_out) <- c("index", "x-type") # Assign column names
rownames(df_out) <- c("h-type", "g-type") # assign row names
} else {
# Create output df
df_values <- c(xdc_index_h, xdc_index_g)
matrix_data <- matrix(df_values, nrow = 1, byrow = TRUE)
df_out <- data.frame(matrix_data)
colnames(df_out) <- c("h-type", "g-type")
rownames(df_out) <- c("x-type")
}
# Return value
return(df_out)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.