Nothing
#' Ratio of performance to inter-quartile
#'
#' These functions are appropriate for cases where the model outcome is a
#' numeric. The ratio of performance to deviation
#' ([rpd()]) and the ratio of performance to inter-quartile ([rpiq()])
#' are both measures of consistency/correlation between observed
#' and predicted values (and not of accuracy).
#'
#' @inherit rpd details
#' @inherit rpd references
#'
#' @family numeric metrics
#' @family consistency metrics
#' @templateVar fn rpd
#' @template return
#'
#' @inheritParams rmse
#'
#' @author Pierre Roudier
#'
#' @seealso
#'
#' The closely related deviation metric: [rpd()]
#'
#' @template examples-numeric
#'
#' @export
rpiq <- function(data, ...) {
UseMethod("rpiq")
}
rpiq <- new_numeric_metric(
rpiq,
direction = "maximize"
)
#' @rdname rpiq
#' @export
rpiq.data.frame <- function(data,
truth,
estimate,
na_rm = TRUE,
case_weights = NULL,
...) {
numeric_metric_summarizer(
name = "rpiq",
fn = rpiq_vec,
data = data,
truth = !!enquo(truth),
estimate = !!enquo(estimate),
na_rm = na_rm,
case_weights = !!enquo(case_weights)
)
}
#' @export
#' @rdname rpiq
rpiq_vec <- function(truth,
estimate,
na_rm = TRUE,
case_weights = NULL,
...) {
check_numeric_metric(truth, estimate, case_weights)
if (na_rm) {
result <- yardstick_remove_missing(truth, estimate, case_weights)
truth <- result$truth
estimate <- result$estimate
case_weights <- result$case_weights
} else if (yardstick_any_missing(truth, estimate, case_weights)) {
return(NA_real_)
}
rpiq_impl(truth, estimate, case_weights)
}
rpiq_impl <- function(truth, estimate, case_weights) {
quantiles <- yardstick_quantile(
x = truth,
probabilities = c(0.25, 0.75),
case_weights = case_weights
)
iqr <- quantiles[[2L]] - quantiles[[1L]]
rmse <- rmse_vec(truth, estimate, case_weights = case_weights)
iqr / rmse
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.