Nothing
test_that("two class produces identical results regardless of level order", {
lst <- data_altman()
df <- lst$pathology
df_rev <- df
df_rev$pathology <- stats::relevel(df_rev$pathology, "norm")
df_rev$scan <- stats::relevel(df_rev$scan, "norm")
expect_equal(
accuracy_vec(df$pathology, df$scan),
accuracy_vec(df_rev$pathology, df_rev$scan)
)
})
test_that("Three class", {
lst <- data_three_class()
three_class <- lst$three_class
three_class_tb <- lst$three_class_tb
expect_equal(
accuracy(three_class, truth = "obs", estimate = "pred")[[".estimate"]],
(24 + 17 + 14) / 150
)
expect_equal(
accuracy(three_class_tb)[[".estimate"]],
(24 + 17 + 14) / 150
)
expect_equal(
accuracy(as.matrix(three_class_tb))[[".estimate"]],
(24 + 17 + 14) / 150
)
expect_equal(
accuracy(three_class, obs, pred_na)[[".estimate"]],
(11 + 10 + 11) / 140
)
expect_equal(
colnames(accuracy(three_class, truth = "obs", estimate = "pred")),
c(".metric", ".estimator", ".estimate")
)
expect_equal(
accuracy(three_class, truth = "obs", estimate = "pred")[[".metric"]],
"accuracy"
)
})
test_that("two class with case weights is correct", {
df <- data.frame(
truth = factor(c("x", "x", "y"), levels = c("x", "y")),
estimate = factor(c("x", "y", "x"), levels = c("x", "y")),
case_weights = c(1L, 1L, 2L)
)
# 1 correct, 2 wrong. Normally 1/3 accuracy, but one of the wrong
# values is weighted 2x so we get 1/4.
expect_identical(
accuracy(df, truth, estimate, case_weights = case_weights)[[".estimate"]],
1 / 4
)
})
test_that("works with hardhat case weights", {
lst <- data_altman()
df <- lst$pathology
imp_wgt <- hardhat::importance_weights(seq_len(nrow(df)))
freq_wgt <- hardhat::frequency_weights(seq_len(nrow(df)))
expect_no_error(
accuracy_vec(df$pathology, df$scan, case_weights = imp_wgt)
)
expect_no_error(
accuracy_vec(df$pathology, df$scan, case_weights = freq_wgt)
)
})
test_that("work with class_pred input", {
skip_if_not_installed("probably")
cp_truth <- probably::as_class_pred(two_class_example$truth, which = 1)
cp_estimate <- probably::as_class_pred(two_class_example$predicted, which = 2)
fct_truth <- two_class_example$truth
fct_truth[1] <- NA
fct_estimate <- two_class_example$predicted
fct_estimate[2] <- NA
expect_identical(
accuracy_vec(fct_truth, cp_estimate),
accuracy_vec(fct_truth, fct_estimate)
)
expect_identical(
accuracy_vec(fct_truth, cp_estimate, na_rm = FALSE),
NA_real_
)
expect_snapshot(
error = TRUE,
accuracy_vec(cp_truth, cp_estimate)
)
})
test_that("Two class - sklearn equivalent", {
py_res <- read_pydata("py-accuracy")
r_metric <- accuracy
expect_equal(
r_metric(two_class_example, truth, predicted)[[".estimate"]],
py_res$binary
)
})
test_that("Multi class - sklearn equivalent", {
py_res <- read_pydata("py-accuracy")
r_metric <- accuracy
expect_equal(
r_metric(hpc_cv, obs, pred)[[".estimate"]],
py_res$multiclass
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.